File size: 12,502 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
import torch.nn as nn
import torch.nn.functional as F
from layer import conv1x1, conv3x3, BasicBlock


class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(ResidualBlock, self).__init__()
  
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not stride == 1:
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
        
        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.BatchNorm2d(planes)
        
        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not stride == 1:
                self.norm3 = nn.Sequential()

        if stride == 1:
            self.downsample = None
        
        else:    
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)


    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)



class BottleneckBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(BottleneckBlock, self).__init__()
  
        self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
        self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
            self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not stride == 1:
                self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
        
        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes//4)
            self.norm2 = nn.BatchNorm2d(planes//4)
            self.norm3 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.BatchNorm2d(planes)
        
        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes//4)
            self.norm2 = nn.InstanceNorm2d(planes//4)
            self.norm3 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            self.norm3 = nn.Sequential()
            if not stride == 1:
                self.norm4 = nn.Sequential()

        if stride == 1:
            self.downsample = None
        
        else:    
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)


    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))
        y = self.relu(self.norm3(self.conv3(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)

class BasicEncoder(nn.Module):
    def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
        super(BasicEncoder, self).__init__()
        self.norm_fn = norm_fn

        if self.norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
            
        elif self.norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(64)

        elif self.norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(64)

        elif self.norm_fn == 'none':
            self.norm1 = nn.Sequential()

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.relu1 = nn.ReLU(inplace=True)

        self.in_planes = 64
        self.layer1 = self._make_layer(64,  stride=1)
        self.layer2 = self._make_layer(96, stride=2)
        self.layer3 = self._make_layer(128, stride=2)

        # output convolution
        self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)

        self.dropout = None
        if dropout > 0:
            self.dropout = nn.Dropout2d(p=dropout)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _make_layer(self, dim, stride=1):
        layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
        layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
        layers = (layer1, layer2)
        
        self.in_planes = dim
        return nn.Sequential(*layers)


    def forward(self, x):

        # if input is list, combine batch dimension
        is_list = isinstance(x, tuple) or isinstance(x, list)
        if is_list:
            batch_dim = x[0].shape[0]
            x = torch.cat(x, dim=0)

        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        x = self.conv2(x)

        if self.training and self.dropout is not None:
            x = self.dropout(x)

        if is_list:
            x = torch.split(x, [batch_dim, batch_dim], dim=0)

        return x


class SmallEncoder(nn.Module):
    def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
        super(SmallEncoder, self).__init__()
        self.norm_fn = norm_fn

        if self.norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
            
        elif self.norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(32)

        elif self.norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(32)

        elif self.norm_fn == 'none':
            self.norm1 = nn.Sequential()

        self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
        self.relu1 = nn.ReLU(inplace=True)

        self.in_planes = 32
        self.layer1 = self._make_layer(32,  stride=1)
        self.layer2 = self._make_layer(64, stride=2)
        self.layer3 = self._make_layer(96, stride=2)

        self.dropout = None
        if dropout > 0:
            self.dropout = nn.Dropout2d(p=dropout)
        
        self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _make_layer(self, dim, stride=1):
        layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
        layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
        layers = (layer1, layer2)
    
        self.in_planes = dim
        return nn.Sequential(*layers)


    def forward(self, x):

        # if input is list, combine batch dimension
        is_list = isinstance(x, tuple) or isinstance(x, list)
        if is_list:
            batch_dim = x[0].shape[0]
            x = torch.cat(x, dim=0)

        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.conv2(x)

        if self.training and self.dropout is not None:
            x = self.dropout(x)

        if is_list:
            x = torch.split(x, [batch_dim, batch_dim], dim=0)

        return x

class ResNetFPN(nn.Module):
    """
    ResNet18, output resolution is 1/8.
    Each block has 2 layers.
    """
    def __init__(self, args, input_dim=3, output_dim=256, ratio=1.0, norm_layer=nn.BatchNorm2d, init_weight=False):
        super().__init__()
        # Config
        block = BasicBlock
        block_dims = args.block_dims
        initial_dim = args.initial_dim
        self.init_weight = init_weight
        self.input_dim = input_dim
        # Class Variable
        self.in_planes = initial_dim
        for i in range(len(block_dims)):
            block_dims[i] = int(block_dims[i] * ratio)
        # Networks
        self.conv1 = nn.Conv2d(input_dim, initial_dim, kernel_size=7, stride=2, padding=3)
        self.bn1 = norm_layer(initial_dim)
        self.relu = nn.ReLU(inplace=True)
        if args.pretrain == 'resnet34':
            n_block = [3, 4, 6]
        elif args.pretrain == 'resnet18':
            n_block = [2, 2, 2]
        else:
            raise NotImplementedError       
        self.layer1 = self._make_layer(block, block_dims[0], stride=1, norm_layer=norm_layer, num=n_block[0])  # 1/2
        self.layer2 = self._make_layer(block, block_dims[1], stride=2, norm_layer=norm_layer, num=n_block[1])  # 1/4
        self.layer3 = self._make_layer(block, block_dims[2], stride=2, norm_layer=norm_layer, num=n_block[2])  # 1/8
        self.final_conv = conv1x1(block_dims[2], output_dim)
        self._init_weights(args)

    def _init_weights(self, args):

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

        if self.init_weight:
            from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights
            if args.pretrain == 'resnet18':
                pretrained_dict = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1).state_dict()
            else:
                pretrained_dict = resnet34(weights=ResNet34_Weights.IMAGENET1K_V1).state_dict()
            model_dict = self.state_dict()
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
            if self.input_dim == 6:
                for k, v in pretrained_dict.items():
                    if k == 'conv1.weight':
                        pretrained_dict[k] = torch.cat((v, v), dim=1)
            model_dict.update(pretrained_dict)
            self.load_state_dict(model_dict, strict=False)
        

    def _make_layer(self, block, dim, stride=1, norm_layer=nn.BatchNorm2d, num=2):
        layers = []
        layers.append(block(self.in_planes, dim, stride=stride, norm_layer=norm_layer))
        for i in range(num - 1):
            layers.append(block(dim, dim, stride=1, norm_layer=norm_layer))
        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        # ResNet Backbone
        x = self.relu(self.bn1(self.conv1(x)))
        for i in range(len(self.layer1)):
            x = self.layer1[i](x)
        for i in range(len(self.layer2)):
            x = self.layer2[i](x)
        for i in range(len(self.layer3)):
            x = self.layer3[i](x)
        # Output
        output = self.final_conv(x)
        return output