File size: 5,548 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilities needed for the inference
# --------------------------------------------------------
import tqdm
import torch
from dust3r.utils.device import to_cpu, collate_with_cat
from dust3r.utils.misc import invalid_to_nans
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf


def _interleave_imgs(img1, img2):
    res = {}
    for key, value1 in img1.items():
        value2 = img2[key]
        if isinstance(value1, torch.Tensor):
            value = torch.stack((value1, value2), dim=1).flatten(0, 1)
        else:
            value = [x for pair in zip(value1, value2) for x in pair]
        res[key] = value
    return res


def make_batch_symmetric(batch):
    view1, view2 = batch
    view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
    return view1, view2


def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None):
    view1, view2 = batch
    ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng'])
    for view in batch:
        for name in view.keys():  # pseudo_focal
            if name in ignore_keys:
                continue
            view[name] = view[name].to(device, non_blocking=True)

    if symmetrize_batch:
        view1, view2 = make_batch_symmetric(batch)

    with torch.cuda.amp.autocast(enabled=bool(use_amp)):
        pred1, pred2 = model(view1, view2)

        # loss is supposed to be symmetric
        with torch.cuda.amp.autocast(enabled=False):
            loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None

    result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss)
    return result[ret] if ret else result


@torch.no_grad()
def inference(pairs, model, device, batch_size=8, verbose=True):
    if verbose:
        print(f'>> Inference with model on {len(pairs)} image pairs')
    result = []

    # first, check if all images have the same size
    multiple_shapes = not (check_if_same_size(pairs))
    if multiple_shapes:  # force bs=1
        batch_size = 1

    for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose):
        res = loss_of_one_batch(collate_with_cat(pairs[i:i + batch_size]), model, None, device)
        result.append(to_cpu(res))

    result = collate_with_cat(result, lists=multiple_shapes)

    return result


def check_if_same_size(pairs):
    shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs]
    shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs]
    return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2)


def get_pred_pts3d(gt, pred, use_pose=False):
    if 'depth' in pred and 'pseudo_focal' in pred:
        try:
            pp = gt['camera_intrinsics'][..., :2, 2]
        except KeyError:
            pp = None
        pts3d = depthmap_to_pts3d(**pred, pp=pp)

    elif 'pts3d' in pred:
        # pts3d from my camera
        pts3d = pred['pts3d']

    elif 'pts3d_in_other_view' in pred:
        # pts3d from the other camera, already transformed
        assert use_pose is True
        return pred['pts3d_in_other_view']  # return!

    if use_pose:
        camera_pose = pred.get('camera_pose')
        assert camera_pose is not None
        pts3d = geotrf(camera_pose, pts3d)

    return pts3d


def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None):
    assert gt_pts1.ndim == pr_pts1.ndim == 4
    assert gt_pts1.shape == pr_pts1.shape
    if gt_pts2 is not None:
        assert gt_pts2.ndim == pr_pts2.ndim == 4
        assert gt_pts2.shape == pr_pts2.shape

    # concat the pointcloud
    nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
    nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None

    pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
    pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None

    all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1
    all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1

    dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
    dot_gt_gt = all_gt.square().sum(dim=-1)

    if fit_mode.startswith('avg'):
        # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1)
        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
    elif fit_mode.startswith('median'):
        scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
    elif fit_mode.startswith('weiszfeld'):
        # init scaling with l2 closed form
        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
        # iterative re-weighted least-squares
        for iter in range(10):
            # re-weighting by inverse of distance
            dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)
            # print(dis.nanmean(-1))
            w = dis.clip_(min=1e-8).reciprocal()
            # update the scaling with the new weights
            scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
    else:
        raise ValueError(f'bad {fit_mode=}')

    if fit_mode.endswith('stop_grad'):
        scaling = scaling.detach()

    scaling = scaling.clip(min=1e-3)
    # assert scaling.isfinite().all(), bb()
    return scaling