File size: 11,124 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# DUSt3R model class
# --------------------------------------------------------
from copy import deepcopy
import torch
import os
from packaging import version
import huggingface_hub
import torch.nn as nn
from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape
from .heads import head_factory
from dust3r.patch_embed import get_patch_embed

import dust3r.utils.path_to_croco  # noqa: F401
from models.croco import CroCoNet  # noqa

inf = float('inf')

hf_version_number = huggingface_hub.__version__
assert version.parse(hf_version_number) >= version.parse("0.22.0"), ("Outdated huggingface_hub version, "
                                                                     "please reinstall requirements.txt")


def load_model(model_path, device, verbose=True):
    if verbose:
        print('... loading model from', model_path)
    ckpt = torch.load(model_path, map_location='cpu')
    args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
    if 'landscape_only' not in args:
        args = args[:-1] + ', landscape_only=False)'
    else:
        args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
    assert "landscape_only=False" in args
    if verbose:
        print(f"instantiating : {args}")
    net = eval(args)
    s = net.load_state_dict(ckpt['model'], strict=False)
    if verbose:
        print(s)
    return net.to(device)

def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module

def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

class AsymmetricCroCo3DStereo (
    CroCoNet,
    huggingface_hub.PyTorchModelHubMixin,
    library_name="align3r",
    repo_url="https://github.com/jiah-cloud/Align3R",
    tags=["image-to-3d"],
):
    """ Two siamese encoders, followed by two decoders.
    The goal is to output 3d points directly, both images in view1's frame
    (hence the asymmetry).   
    """

    def __init__(self,
                 output_mode='pts3d',
                 head_type='linear',
                 depth_mode=('exp', -inf, inf),
                 conf_mode=('exp', 1, inf),
                 freeze='none',
                 landscape_only=True,
                 patch_embed_cls='PatchEmbedDust3R',  # PatchEmbedDust3R or ManyAR_PatchEmbed
                 **croco_kwargs):
        self.patch_embed_cls = patch_embed_cls
        self.croco_args = fill_default_args(croco_kwargs, super().__init__)
        super().__init__(**croco_kwargs)

        # dust3r specific initialization
        self.dec_blocks2 = deepcopy(self.dec_blocks)
        self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
        self.set_freeze(freeze)
        self.zero_convs = []
        for i in range(len(self.dec_blocks_pc) + 1):
            self.zero_convs.append(self.make_zero_conv(self.dec_embed_dim).cuda())
        self.zero_convs = nn.ModuleList(self.zero_convs)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kw):
        if os.path.isfile(pretrained_model_name_or_path):
            return load_model(pretrained_model_name_or_path, device='cpu')
        else:
            try:
                model = super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)
            except TypeError as e:
                raise Exception(f'tried to load {pretrained_model_name_or_path} from huggingface, but failed')
            return model

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
        self.patch_embed_point_cloud = get_patch_embed(self.patch_embed_cls, img_size, patch_size, self.dec_embed_dim)

    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if not any(k.startswith('dec_blocks2') for k in ckpt):
            for key, value in ckpt.items():
                if key.startswith('dec_blocks'):
                    new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
        return super().load_state_dict(new_ckpt, **kw)

    def set_freeze(self, freeze):  # this is for use by downstream models
        self.freeze = freeze
        to_be_frozen = {
            'none': [],
            'mask': [self.mask_token],
            'encoder': [self.mask_token, self.patch_embed, self.enc_blocks],
        }
        freeze_all_params(to_be_frozen[freeze])

    def _set_prediction_head(self, *args, **kwargs):
        """ No prediction head """
        return

    def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
                            **kw):
        assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
            f'{img_size=} must be multiple of {patch_size=}'
        self.output_mode = output_mode
        self.head_type = head_type
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        # allocate heads
        self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        # magic wrapper
        self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
        self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)

    def _encode_image(self, image, true_shape):
        # embed the image into patches  (x has size B x Npatches x C)
        x, pos = self.patch_embed(image, true_shape=true_shape)
        #print(x.shape)
        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks:
            x = blk(x, pos)

        x = self.enc_norm(x)
        return x, pos, None

    def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2):
        if img1.shape[-2:] == img2.shape[-2:]:
            out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0),
                                             torch.cat((true_shape1, true_shape2), dim=0))
            out, out2 = out.chunk(2, dim=0)
            pos, pos2 = pos.chunk(2, dim=0)
        else:
            out, pos, _ = self._encode_image(img1, true_shape1)
            out2, pos2, _ = self._encode_image(img2, true_shape2)
        return out, out2, pos, pos2

    def _encode_symmetrized(self, view1, view2):
        img1 = view1['img']
        img2 = view2['img']
        B = img1.shape[0]
        #print(img1.shape,img2.shape)
        # Recover true_shape when available, otherwise assume that the img shape is the true one
        shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
        shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
        # warning! maybe the images have different portrait/landscape orientations
        #print(img1.shape,pred_depth1.shape)
        # img1 = torch.cat([img1, pred_depth1[:,None,:,:]], dim=1)
        # img2 = torch.cat([img2, pred_depth2[:,None,:,:]], dim=1)
        if is_symmetrized(view1, view2):
            # computing half of forward pass!'
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2])
            feat1, feat2 = interleave(feat1, feat2)
            pos1, pos2 = interleave(pos1, pos2)
        else:
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2)

        return (shape1, shape2), (feat1, feat2), (pos1, pos2)
    
    def make_zero_conv(self, channels):
        return nn.Sequential(zero_module(conv_nd(1, channels, channels, 1, padding=0)))

    def _decoder(self, f1, pos1, f2, pos2, point_cloud, point_cloud_pos):
        final_output = [(f1, f2)]  # before projection

        # project to decoder dim
        f1 = self.decoder_embed(f1)
        f2 = self.decoder_embed(f2)

        # incorporate point maps
        f1 = f1 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[0].transpose(-1,-2)).transpose(-1,-2)
        f2 = f2 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[1].transpose(-1,-2)).transpose(-1,-2)

        final_output.append((f1, f2))

        for i in range(len(self.dec_blocks)):
            blk1 = self.dec_blocks[i]
            blk2 = self.dec_blocks2[i]
            # img1 side
            f1, _ = blk1(*final_output[-1][::+1], pos1, pos2)
            # img2 side
            f2, _ = blk2(*final_output[-1][::-1], pos2, pos1)

            # incorporate point maps
            if i <len(self.dec_blocks_pc):
              point_cloud = self.dec_blocks_pc[i](point_cloud, point_cloud_pos)
              f1 = f1 + self.zero_convs[i+1](point_cloud.chunk(2, dim=0)[0].transpose(-1,-2)).transpose(-1,-2)
              f2 = f2 + self.zero_convs[i+1](point_cloud.chunk(2, dim=0)[1].transpose(-1,-2)).transpose(-1,-2)
            # store the result
            final_output.append((f1, f2))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
        return zip(*final_output)

    def _downstream_head(self, head_num, decout, img_shape):
        B, S, D = decout[-1].shape
        # img_shape = tuple(map(int, img_shape))
        head = getattr(self, f'head{head_num}')
        return head(decout, img_shape)

    def forward(self, view1, view2):
        # encode the two images --> B,S,D
        (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2)
        point_cloud1 = view1['pred_depth'].permute(0,3,1,2)
        point_cloud2 = view2['pred_depth'].permute(0,3,1,2)

        # patch_embed point maps
        point_cloud, point_cloud_pos = self.patch_embed_point_cloud(torch.cat((point_cloud1, point_cloud2), dim=0), true_shape=torch.cat((shape1, shape2), dim=0))

        dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2, point_cloud, point_cloud_pos)

        with torch.cuda.amp.autocast(enabled=False):
            res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1)
            res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2)
        #print(res1)
        res2['pts3d_in_other_view'] = res2.pop('pts3d')  # predict view2's pts3d in view1's frame
        return res1, res2