File size: 18,592 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# training code for DUSt3R
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import sys
import time
import math
from collections import defaultdict
from pathlib import Path
from typing import Sized
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
torch.autograd.set_detect_anomaly(True)
from dust3r.model import AsymmetricCroCo3DStereo, inf # noqa: F401, needed when loading the model
from dust3r.datasets import get_data_loader # noqa
from dust3r.losses import * # noqa: F401, needed when loading the model
from dust3r.inference import loss_of_one_batch # noqa
import dust3r.utils.path_to_croco # noqa: F401
import croco.utils.misc as misc # noqa
from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa
def get_args_parser():
parser = argparse.ArgumentParser('DUST3R training', add_help=False)
# model and criterion
parser.add_argument('--model', default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')",
type=str, help="string containing the model to build")
parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint')
parser.add_argument('--train_criterion', default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)",
type=str, help="train criterion")
parser.add_argument('--test_criterion', default=None, type=str, help="test criterion")
# dataset
parser.add_argument('--train_dataset', required=True, type=str, help="training set")
parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set")
# training
parser.add_argument('--seed', default=0, type=int, help="Random seed")
parser.add_argument('--batch_size', default=64, type=int,
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
parser.add_argument('--accum_iter', default=1, type=int,
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)")
parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler")
parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)")
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
parser.add_argument('--amp', type=int, default=0,
choices=[0, 1], help="Use Automatic Mixed Precision for pretraining")
parser.add_argument("--disable_cudnn_benchmark", action='store_true', default=False,
help="set cudnn.benchmark = False")
# others
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency')
parser.add_argument('--save_freq', default=1, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth')
parser.add_argument('--keep_freq', default=20, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth')
parser.add_argument('--print_freq', default=20, type=int,
help='frequence (number of iterations) to print infos while training')
# output dir
parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output")
return parser
def train(args):
misc.init_distributed_mode(args)
global_rank = misc.get_rank()
world_size = misc.get_world_size()
print("output_dir: " + args.output_dir)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# auto resume
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth')
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None
print("****************************************")
print(args.resume)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# fix the seed
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = not args.disable_cudnn_benchmark
# training dataset and loader
print('Building train dataset {:s}'.format(args.train_dataset))
# dataset and loader
data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False)
print('Building test dataset {:s}'.format(args.train_dataset))
data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size, args.num_workers, test=True)
for dataset in args.test_dataset.split('+')}
# model
print('Loading model: {:s}'.format(args.model))
model = eval(args.model)
print(f'>> Creating train criterion = {args.train_criterion}')
train_criterion = eval(args.train_criterion).to(device)
print(f'>> Creating test criterion = {args.test_criterion or args.train_criterion}')
test_criterion = eval(args.test_criterion or args.criterion).to(device)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
if args.pretrained and not args.resume:
print('Loading pretrained: ', args.pretrained)
ckpt = torch.load(args.pretrained, map_location=device)
# ckpt_state_dict = ckpt['model']
# # Get the current model's state dictionary
# model_state_dict = model.state_dict()
# # Filter out keys with mismatched shapes
# filtered_ckpt_state_dict = {k: v for k, v in ckpt_state_dict.items() if k in model_state_dict and v.shape == model_state_dict[k].shape}
# # Load the filtered state dictionary
# model_state_dict.update(filtered_ckpt_state_dict)
# model.load_state_dict(model_state_dict)
print(model.load_state_dict(ckpt['model'], strict=False))
del ckpt # in case it occupies memory
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
def write_log_stats(epoch, train_stats, test_stats):
if misc.is_main_process():
if log_writer is not None:
log_writer.flush()
log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()})
for test_name in data_loader_test:
if test_name not in test_stats:
continue
log_stats.update({test_name + '_' + k: v for k, v in test_stats[test_name].items()})
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
def save_model(epoch, fname, best_so_far):
misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far)
best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler)
if best_so_far is None:
best_so_far = float('inf')
if global_rank == 0 and args.output_dir is not None:
log_writer = SummaryWriter(log_dir=args.output_dir)
else:
log_writer = None
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
train_stats = test_stats = {}
for epoch in range(args.start_epoch, args.epochs + 1):
# Save immediately the last checkpoint
if epoch > args.start_epoch:
if args.save_freq and epoch % args.save_freq == 0 or epoch == args.epochs:
save_model(epoch - 1, 'last', best_so_far)
# Test on multiple datasets
new_best = False
if (epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0):
test_stats = {}
for test_name, testset in data_loader_test.items():
stats = test_one_epoch(model, test_criterion, testset,
device, epoch, log_writer=log_writer, args=args, prefix=test_name)
test_stats[test_name] = stats
# Save best of all
if stats['loss_med'] < best_so_far:
best_so_far = stats['loss_med']
new_best = True
# Save more stuff
write_log_stats(epoch, train_stats, test_stats)
if epoch > args.start_epoch:
if args.keep_freq and epoch % args.keep_freq == 0:
save_model(epoch - 1, str(epoch), best_so_far)
if new_best:
save_model(epoch - 1, 'best', best_so_far)
if epoch >= args.epochs:
break # exit after writing last test to disk
# Train
train_stats = train_one_epoch(
model, train_criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
save_final_model(args, args.epochs, model_without_ddp, best_so_far=best_so_far)
def save_final_model(args, epoch, model_without_ddp, best_so_far=None):
output_dir = Path(args.output_dir)
checkpoint_path = output_dir / 'checkpoint-final.pth'
to_save = {
'args': args,
'model': model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict(),
'epoch': epoch
}
if best_so_far is not None:
to_save['best_so_far'] = best_so_far
print(f'>> Saving model to {checkpoint_path} ...')
misc.save_on_master(to_save, checkpoint_path)
def build_dataset(dataset, batch_size, num_workers, test=False):
split = ['Train', 'Test'][test]
print(f'Building {split} Data loader for dataset: ', dataset)
loader = get_data_loader(dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_mem=True,
shuffle=not (test),
drop_last=not (test))
print(f"{split} dataset length: ", len(loader))
return loader
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Sized, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
args,
log_writer=None):
assert torch.backends.cuda.matmul.allow_tf32 == True
model.train(True)
################################# only finetune the following module ###########################################
# list_grad = ["downstream_head", "dec_blocks.8", "dec_blocks.9", "dec_blocks.10", "dec_blocks.11", "dec_norm",
# "dec_blocks2.8", "dec_blocks2.9", "dec_blocks2.10", "dec_blocks2.11"]
list_grad = ["downstream_head", "dec_blocks", "dec_norm",
"dec_blocks2",'dec_blocks_pc','patch_embed_point_cloud','zero_convs']
print(model.named_parameters())
for name, p in model.named_parameters():
if not any([grad in name for grad in list_grad]):
p.requires_grad = False
if 'zero_convs' in name:
print(p.requires_grad)
#################################################################################################################
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
accum_iter = args.accum_iter
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
data_loader.dataset.set_epoch(epoch)
if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
data_loader.sampler.set_epoch(epoch)
optimizer.zero_grad()
for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
epoch_f = epoch + data_iter_step / len(data_loader)
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
misc.adjust_learning_rate(optimizer, epoch_f, args)
loss_tuple = loss_of_one_batch(batch, model, criterion, device,
symmetrize_batch=True,
use_amp=bool(args.amp), ret='loss')
loss, loss_details = loss_tuple # criterion returns two values
loss_value = float(loss)
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value), force=True)
sys.exit(1)
loss /= accum_iter
# if not isinstance(loss, torch.Tensor):
# loss = torch.tensor(0.0).cuda()
loss_scaler(loss, optimizer, parameters=filter(lambda p: p.requires_grad, model.parameters()),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
del loss
del batch
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(epoch=epoch_f)
metric_logger.update(lr=lr)
metric_logger.update(loss=loss_value, **loss_details)
if (data_iter_step + 1) % accum_iter == 0 and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0:
loss_value_reduce = misc.all_reduce_mean(loss_value) # MUST BE EXECUTED BY ALL NODES
if log_writer is None:
continue
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int(epoch_f * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('train_lr', lr, epoch_1000x)
log_writer.add_scalar('train_iter', epoch_1000x, epoch_1000x)
for name, val in loss_details.items():
log_writer.add_scalar('train_' + name, val, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Sized, device: torch.device, epoch: int,
args, log_writer=None, prefix='test'):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
header = 'Test Epoch: [{}]'.format(epoch)
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
data_loader.dataset.set_epoch(epoch)
if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
data_loader.sampler.set_epoch(epoch)
for _, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
loss_tuple = loss_of_one_batch(batch, model, criterion, device,
symmetrize_batch=True,
use_amp=bool(args.amp), ret='loss')
loss_value, loss_details = loss_tuple # criterion returns two values
metric_logger.update(loss=float(loss_value), **loss_details)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
aggs = [('avg', 'global_avg'), ('med', 'median')]
results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs}
if log_writer is not None:
for name, val in results.items():
log_writer.add_scalar(prefix + '_' + name, val, 1000 * epoch)
return results
|