File size: 10,187 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import random
import sys
import traceback
from argparse import ArgumentParser

import submitit
import torch

from hydra import compose, initialize_config_module
from hydra.utils import instantiate

from iopath.common.file_io import g_pathmgr
from omegaconf import OmegaConf

from training.utils.train_utils import makedir, register_omegaconf_resolvers

os.environ["HYDRA_FULL_ERROR"] = "1"


def single_proc_run(local_rank, main_port, cfg, world_size):
    """Single GPU process"""
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = str(main_port)
    os.environ["RANK"] = str(local_rank)
    os.environ["LOCAL_RANK"] = str(local_rank)
    os.environ["WORLD_SIZE"] = str(world_size)
    try:
        register_omegaconf_resolvers()
    except Exception as e:
        logging.info(e)

    trainer = instantiate(cfg.trainer, _recursive_=False)
    trainer.run()


def single_node_runner(cfg, main_port: int):
    assert cfg.launcher.num_nodes == 1
    num_proc = cfg.launcher.gpus_per_node
    torch.multiprocessing.set_start_method(
        "spawn"
    )  # CUDA runtime does not support `fork`
    if num_proc == 1:
        # directly call single_proc so we can easily set breakpoints
        # mp.spawn does not let us set breakpoints
        single_proc_run(local_rank=0, main_port=main_port, cfg=cfg, world_size=num_proc)
    else:
        mp_runner = torch.multiprocessing.start_processes
        args = (main_port, cfg, num_proc)
        # Note: using "fork" below, "spawn" causes time and error regressions. Using
        # spawn changes the default multiprocessing context to spawn, which doesn't
        # interact well with the dataloaders (likely due to the use of OpenCV).
        mp_runner(single_proc_run, args=args, nprocs=num_proc, start_method="spawn")


def format_exception(e: Exception, limit=20):
    traceback_str = "".join(traceback.format_tb(e.__traceback__, limit=limit))
    return f"{type(e).__name__}: {e}\nTraceback:\n{traceback_str}"


class SubmititRunner(submitit.helpers.Checkpointable):
    """A callable which is passed to submitit to launch the jobs."""

    def __init__(self, port, cfg):
        self.cfg = cfg
        self.port = port
        self.has_setup = False

    def run_trainer(self):
        job_env = submitit.JobEnvironment()
        # Need to add this again so the hydra.job.set_env PYTHONPATH
        # is also set when launching jobs.
        add_pythonpath_to_sys_path()
        os.environ["MASTER_ADDR"] = job_env.hostnames[0]
        os.environ["MASTER_PORT"] = str(self.port)
        os.environ["RANK"] = str(job_env.global_rank)
        os.environ["LOCAL_RANK"] = str(job_env.local_rank)
        os.environ["WORLD_SIZE"] = str(job_env.num_tasks)

        register_omegaconf_resolvers()
        cfg_resolved = OmegaConf.to_container(self.cfg, resolve=False)
        cfg_resolved = OmegaConf.create(cfg_resolved)

        trainer = instantiate(cfg_resolved.trainer, _recursive_=False)
        trainer.run()

    def __call__(self):
        job_env = submitit.JobEnvironment()
        self.setup_job_info(job_env.job_id, job_env.global_rank)
        try:
            self.run_trainer()
        except Exception as e:
            # Log the exception. Then raise it again (as what SubmititRunner currently does).
            message = format_exception(e)
            logging.error(message)
            raise e

    def setup_job_info(self, job_id, rank):
        """Set up slurm job info"""
        self.job_info = {
            "job_id": job_id,
            "rank": rank,
            "cluster": self.cfg.get("cluster", None),
            "experiment_log_dir": self.cfg.launcher.experiment_log_dir,
        }

        self.has_setup = True


def add_pythonpath_to_sys_path():
    if "PYTHONPATH" not in os.environ or not os.environ["PYTHONPATH"]:
        return
    sys.path = os.environ["PYTHONPATH"].split(":") + sys.path


def main(args) -> None:
    cfg = compose(config_name=args.config)
    if cfg.launcher.experiment_log_dir is None:
        cfg.launcher.experiment_log_dir = os.path.join(
            os.getcwd(), "sam2_logs", args.config
        )
    print("###################### Train App Config ####################")
    print(OmegaConf.to_yaml(cfg))
    print("############################################################")

    add_pythonpath_to_sys_path()
    makedir(cfg.launcher.experiment_log_dir)
    with g_pathmgr.open(
        os.path.join(cfg.launcher.experiment_log_dir, "config.yaml"), "w"
    ) as f:
        f.write(OmegaConf.to_yaml(cfg))

    cfg_resolved = OmegaConf.to_container(cfg, resolve=False)
    cfg_resolved = OmegaConf.create(cfg_resolved)

    with g_pathmgr.open(
        os.path.join(cfg.launcher.experiment_log_dir, "config_resolved.yaml"), "w"
    ) as f:
        f.write(OmegaConf.to_yaml(cfg_resolved, resolve=True))

    submitit_conf = cfg.get("submitit", None)
    assert submitit_conf is not None, "Missing submitit config"

    submitit_dir = cfg.launcher.experiment_log_dir
    submitit_dir = os.path.join(submitit_dir, "submitit_logs")
    # Priotrize cmd line args
    cfg.launcher.gpus_per_node = (
        args.num_gpus if args.num_gpus is not None else cfg.launcher.gpus_per_node
    )
    cfg.launcher.num_nodes = (
        args.num_nodes if args.num_nodes is not None else cfg.launcher.num_nodes
    )
    submitit_conf.use_cluster = (
        args.use_cluster if args.use_cluster is not None else submitit_conf.use_cluster
    )
    if submitit_conf.use_cluster:
        executor = submitit.AutoExecutor(folder=submitit_dir)
        submitit_conf.partition = (
            args.partition
            if args.partition is not None
            else submitit_conf.get("partition", None)
        )
        submitit_conf.account = (
            args.account
            if args.account is not None
            else submitit_conf.get("account", None)
        )
        submitit_conf.qos = (
            args.qos if args.qos is not None else submitit_conf.get("qos", None)
        )
        job_kwargs = {
            "timeout_min": 60 * submitit_conf.timeout_hour,
            "name": (
                submitit_conf.name if hasattr(submitit_conf, "name") else args.config
            ),
            "slurm_partition": submitit_conf.partition,
            "gpus_per_node": cfg.launcher.gpus_per_node,
            "tasks_per_node": cfg.launcher.gpus_per_node,  # one task per GPU
            "cpus_per_task": submitit_conf.cpus_per_task,
            "nodes": cfg.launcher.num_nodes,
            "slurm_additional_parameters": {
                "exclude": " ".join(submitit_conf.get("exclude_nodes", [])),
            },
        }
        if "include_nodes" in submitit_conf:
            assert (
                len(submitit_conf["include_nodes"]) >= cfg.launcher.num_nodes
            ), "Not enough nodes"
            job_kwargs["slurm_additional_parameters"]["nodelist"] = " ".join(
                submitit_conf["include_nodes"]
            )
        if submitit_conf.account is not None:
            job_kwargs["slurm_additional_parameters"]["account"] = submitit_conf.account
        if submitit_conf.qos is not None:
            job_kwargs["slurm_additional_parameters"]["qos"] = submitit_conf.qos

        if submitit_conf.get("mem_gb", None) is not None:
            job_kwargs["mem_gb"] = submitit_conf.mem_gb
        elif submitit_conf.get("mem", None) is not None:
            job_kwargs["slurm_mem"] = submitit_conf.mem

        if submitit_conf.get("constraints", None) is not None:
            job_kwargs["slurm_constraint"] = submitit_conf.constraints

        if submitit_conf.get("comment", None) is not None:
            job_kwargs["slurm_comment"] = submitit_conf.comment

        # Supports only cpu-bind option within srun_args. New options can be added here
        if submitit_conf.get("srun_args", None) is not None:
            job_kwargs["slurm_srun_args"] = []
            if submitit_conf.srun_args.get("cpu_bind", None) is not None:
                job_kwargs["slurm_srun_args"].extend(
                    ["--cpu-bind", submitit_conf.srun_args.cpu_bind]
                )

        print("###################### SLURM Config ####################")
        print(job_kwargs)
        print("##########################################")
        executor.update_parameters(**job_kwargs)

        main_port = random.randint(
            submitit_conf.port_range[0], submitit_conf.port_range[1]
        )
        runner = SubmititRunner(main_port, cfg)
        job = executor.submit(runner)
        print(f"Submitit Job ID: {job.job_id}")
        runner.setup_job_info(job.job_id, rank=0)
    else:
        cfg.launcher.num_nodes = 1
        main_port = random.randint(
            submitit_conf.port_range[0], submitit_conf.port_range[1]
        )
        single_node_runner(cfg, main_port)


if __name__ == "__main__":

    initialize_config_module("sam2", version_base="1.2")
    parser = ArgumentParser()
    parser.add_argument(
        "-c",
        "--config",
        required=True,
        type=str,
        help="path to config file (e.g. configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml)",
    )
    parser.add_argument(
        "--use-cluster",
        type=int,
        default=None,
        help="whether to launch on a cluster, 0: run locally, 1: run on a cluster",
    )
    parser.add_argument("--partition", type=str, default=None, help="SLURM partition")
    parser.add_argument("--account", type=str, default=None, help="SLURM account")
    parser.add_argument("--qos", type=str, default=None, help="SLURM qos")
    parser.add_argument(
        "--num-gpus", type=int, default=None, help="number of GPUS per node"
    )
    parser.add_argument("--num-nodes", type=int, default=None, help="Number of nodes")
    args = parser.parse_args()
    args.use_cluster = bool(args.use_cluster) if args.use_cluster is not None else None
    register_omegaconf_resolvers()
    main(args)