File size: 30,000 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
cacc415
 
 
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacc415
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import contextlib
import cv2
from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer, edge_str
from dust3r.cloud_opt_flow.pair_viewer import PairViewer
from dust3r.utils.geometry import xy_grid, geotrf, depthmap_to_pts3d
from dust3r.utils.device import to_cpu, to_numpy
from dust3r.utils.goem_opt import DepthBasedWarping, OccMask, WarpImage, depth_regularization_si_weighted, tum_to_pose_matrix
from third_party.raft import load_RAFT
# from sam2.build_sam import build_sam2_video_predictor
# sam2_checkpoint = "third_party/sam2/checkpoints/sam2.1_hiera_large.pt"
# model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"

def smooth_L1_loss_fn(estimate, gt, mask, beta=1.0, per_pixel_thre=50.):
    loss_raw_shape = F.smooth_l1_loss(estimate*mask, gt*mask, beta=beta, reduction='none')
    if per_pixel_thre > 0:
        per_pixel_mask = (loss_raw_shape < per_pixel_thre) * mask
    else:
        per_pixel_mask = mask
    return torch.sum(loss_raw_shape * per_pixel_mask) / torch.sum(per_pixel_mask)

def mse_loss_fn(estimate, gt, mask):
    v = torch.sum((estimate*mask-gt*mask)**2) / torch.sum(mask)
    return v  # , v.item()

class PointCloudOptimizer(BasePCOptimizer):
    """ Optimize a global scene, given a list of pairwise observations.
    Graph node: images
    Graph edges: observations = (pred1, pred2)
    """

    def __init__(self, *args, optimize_pp=False, focal_break=20, shared_focal=False, flow_loss_fn='smooth_l1', flow_loss_weight=0.0, 
                 depth_regularize_weight=0.0, num_total_iter=300, temporal_smoothing_weight=0, translation_weight=0.1, flow_loss_start_epoch=0.15, flow_loss_thre=50,
                 sintel_ckpt=False, use_self_mask=False, pxl_thre=50, sam2_mask_refine=True, motion_mask_thre=0.35, **kwargs):
        super().__init__(*args, **kwargs)

        self.has_im_poses = True  # by definition of this class
        self.focal_break = focal_break
        self.num_total_iter = num_total_iter
        self.temporal_smoothing_weight = temporal_smoothing_weight
        self.translation_weight = translation_weight
        self.flow_loss_flag = False
        self.flow_loss_start_epoch = flow_loss_start_epoch
        self.flow_loss_thre = flow_loss_thre
        self.optimize_pp = optimize_pp
        self.pxl_thre = pxl_thre
        self.motion_mask_thre = motion_mask_thre

        # adding thing to optimize
        self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes)  # log(depth)
        self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs))  # camera poses
        self.shared_focal = shared_focal
        if self.shared_focal:
            self.im_focals = nn.ParameterList(torch.FloatTensor(
                [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes[:1])  # camera intrinsics
        else:
            self.im_focals = nn.ParameterList(torch.FloatTensor(
                [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes)  # camera intrinsics
        self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs))  # camera intrinsics
        self.im_pp.requires_grad_(optimize_pp)

        self.imshape = self.imshapes[0]
        im_areas = [h*w for h, w in self.imshapes]
        self.max_area = max(im_areas)

        # adding thing to optimize
        self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) #(num_imgs, H*W)

        self.im_poses = ParameterStack(self.im_poses, is_param=True)
        self.im_focals = ParameterStack(self.im_focals, is_param=True)
        self.im_pp = ParameterStack(self.im_pp, is_param=True)
        self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
        self.register_buffer('_grid', ParameterStack(
            [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))

        # pre-compute pixel weights
        self.register_buffer('_weight_i', ParameterStack(
            [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
        self.register_buffer('_weight_j', ParameterStack(
            [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))

        # precompute aa
        self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
        self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
        self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
        self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
        self.total_area_i = sum([im_areas[i] for i, j in self.edges])
        self.total_area_j = sum([im_areas[j] for i, j in self.edges])

        self.depth_wrapper = DepthBasedWarping()
        self.backward_warper = WarpImage()
        self.depth_regularizer = depth_regularization_si_weighted
        if flow_loss_fn == 'smooth_l1':
            self.flow_loss_fn = smooth_L1_loss_fn
        elif flow_loss_fn == 'mse':
            self.low_loss_fn = mse_loss_fn

        self.flow_loss_weight = flow_loss_weight
        self.depth_regularize_weight = depth_regularize_weight
        if self.flow_loss_weight > 0:
            self.flow_ij, self.flow_ji, self.flow_valid_mask_i, self.flow_valid_mask_j = self.get_flow(sintel_ckpt) # (num_pairs, 2, H, W)
            if use_self_mask: self.get_motion_mask_from_pairs(*args)
            # turn off the gradient for the flow
            self.flow_ij.requires_grad_(False)
            self.flow_ji.requires_grad_(False)
            self.flow_valid_mask_i.requires_grad_(False)
            self.flow_valid_mask_j.requires_grad_(False)
            sam2_mask_refine = False
            if sam2_mask_refine: 
                with torch.no_grad():
                    self.refine_motion_mask_w_sam2()
            else:
                self.sam2_dynamic_masks = None

    def get_flow(self, sintel_ckpt=False): #TODO: test with gt flow
        print('precomputing flow...')
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        get_valid_flow_mask = OccMask(th=3.0)
        pair_imgs = [np.stack(self.imgs)[self._ei], np.stack(self.imgs)[self._ej]]
        sintel_ckpt=False
        flow_net = load_RAFT() if sintel_ckpt else load_RAFT("third_party/RAFT/models/Tartan-C-T432x960-M.pth")
        flow_net = flow_net.to(device)
        flow_net.eval()
        if len(pair_imgs[0].shape)==3:
            pair_imgs = [pair_imgs[0][None], pair_imgs[1][None]]
        #print(self._ei)
        with torch.no_grad():
            chunk_size = 12
            flow_ij = []
            flow_ji = []
            num_pairs = len(pair_imgs[0])
            for i in tqdm(range(0, num_pairs, chunk_size)):
                end_idx = min(i + chunk_size, num_pairs)
                imgs_ij = [torch.tensor(pair_imgs[0][i:end_idx]).float().to(device),
                        torch.tensor(pair_imgs[1][i:end_idx]).float().to(device)]
                #print(imgs_ij[0].shape)
                flow_ij.append(flow_net(imgs_ij[0].permute(0, 3, 1, 2) * 255, 
                                        imgs_ij[1].permute(0, 3, 1, 2) * 255, 
                                        iters=20, test_mode=True)[1])
                flow_ji.append(flow_net(imgs_ij[1].permute(0, 3, 1, 2) * 255, 
                                        imgs_ij[0].permute(0, 3, 1, 2) * 255, 
                                        iters=20, test_mode=True)[1])

            flow_ij = torch.cat(flow_ij, dim=0)
            flow_ji = torch.cat(flow_ji, dim=0)
            valid_mask_i = get_valid_flow_mask(flow_ij, flow_ji)
            valid_mask_j = get_valid_flow_mask(flow_ji, flow_ij)
        print('flow precomputed')
        # delete the flow net
        if flow_net is not None: del flow_net
        return flow_ij, flow_ji, valid_mask_i, valid_mask_j

    def get_motion_mask_from_pairs(self, view1, view2, pred1, pred2):
        assert self.is_symmetrized, 'only support symmetric case'
        symmetry_pairs_idx = [(i, i+len(self.edges)//2) for i in range(len(self.edges)//2)]
        intrinsics_i = []
        intrinsics_j = []
        R_i = []
        R_j = []
        T_i = []
        T_j = []
        depth_maps_i = []
        depth_maps_j = []
        for i, j in tqdm(symmetry_pairs_idx):
            new_view1 = {}
            new_view2 = {}
            for key in view1.keys():
                if isinstance(view1[key], list):
                    new_view1[key] = [view1[key][i], view1[key][j]]
                    new_view2[key] = [view2[key][i], view2[key][j]]
                elif isinstance(view1[key], torch.Tensor):
                    new_view1[key] = torch.stack([view1[key][i], view1[key][j]])
                    new_view2[key] = torch.stack([view2[key][i], view2[key][j]])
            new_view1['idx'] = [0, 1]
            new_view2['idx'] = [1, 0]
            new_pred1 = {}
            new_pred2 = {}
            for key in pred1.keys():
                if isinstance(pred1[key], list):
                    new_pred1[key] = [pred1[key][i], pred1[key][j]]
                elif isinstance(pred1[key], torch.Tensor):
                    new_pred1[key] = torch.stack([pred1[key][i], pred1[key][j]])
            for key in pred2.keys():
                if isinstance(pred2[key], list):
                    new_pred2[key] = [pred2[key][i], pred2[key][j]]
                elif isinstance(pred2[key], torch.Tensor):
                    new_pred2[key] = torch.stack([pred2[key][i], pred2[key][j]])
            pair_viewer = PairViewer(new_view1, new_view2, new_pred1, new_pred2, verbose=False)
            intrinsics_i.append(pair_viewer.get_intrinsics()[0])
            intrinsics_j.append(pair_viewer.get_intrinsics()[1])
            R_i.append(pair_viewer.get_im_poses()[0][:3, :3])
            R_j.append(pair_viewer.get_im_poses()[1][:3, :3])
            T_i.append(pair_viewer.get_im_poses()[0][:3, 3:])
            T_j.append(pair_viewer.get_im_poses()[1][:3, 3:])
            depth_maps_i.append(pair_viewer.get_depthmaps()[0])
            depth_maps_j.append(pair_viewer.get_depthmaps()[1])
        
        self.intrinsics_i = torch.stack(intrinsics_i).to(self.flow_ij.device)
        self.intrinsics_j = torch.stack(intrinsics_j).to(self.flow_ij.device)
        self.R_i = torch.stack(R_i).to(self.flow_ij.device)
        self.R_j = torch.stack(R_j).to(self.flow_ij.device)
        self.T_i = torch.stack(T_i).to(self.flow_ij.device)
        self.T_j = torch.stack(T_j).to(self.flow_ij.device)
        self.depth_maps_i = torch.stack(depth_maps_i).unsqueeze(1).to(self.flow_ij.device)
        self.depth_maps_j = torch.stack(depth_maps_j).unsqueeze(1).to(self.flow_ij.device)
        # self.depth_maps_i[self.depth_maps_i>0.7] = 0.7
        # self.depth_maps_j[self.depth_maps_j>0.7] = 0.7
        #cv2.imwrite('1.png', self.depth_maps_i[0,0].cpu().numpy()*255)
        #print(self.depth_maps_i,self.depth_maps_i.shape)
        try:
          ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.inv(self.intrinsics_i))
        except Exception as e:
          ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.pinv(self.intrinsics_i))
        try:
          ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.inv(self.intrinsics_j))
        except Exception as e:
          ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.pinv(self.intrinsics_j))
        err_map_i = torch.norm(ego_flow_1_2[:, :2, ...] - self.flow_ij[:len(symmetry_pairs_idx)], dim=1)
        err_map_j = torch.norm(ego_flow_2_1[:, :2, ...] - self.flow_ji[:len(symmetry_pairs_idx)], dim=1)
        # normalize the error map for each pair
        err_map_i = (err_map_i - err_map_i.amin(dim=(1, 2), keepdim=True)) / (err_map_i.amax(dim=(1, 2), keepdim=True) - err_map_i.amin(dim=(1, 2), keepdim=True))
        err_map_j = (err_map_j - err_map_j.amin(dim=(1, 2), keepdim=True)) / (err_map_j.amax(dim=(1, 2), keepdim=True) - err_map_j.amin(dim=(1, 2), keepdim=True))
        self.dynamic_masks = [[] for _ in range(self.n_imgs)]

        for i, j in symmetry_pairs_idx:
            i_idx = self._ei[i]
            j_idx = self._ej[i]
            self.dynamic_masks[i_idx].append(err_map_i[i])
            self.dynamic_masks[j_idx].append(err_map_j[i])
        
        for i in range(self.n_imgs):
            self.dynamic_masks[i] = torch.stack(self.dynamic_masks[i]).mean(dim=0) > self.motion_mask_thre

    def refine_motion_mask_w_sam2(self):
        device = 'cuda' if torch.cuda.is_available() else 'cpu'

        # Save previous TF32 settings
        if device == 'cuda':
            prev_allow_tf32 = torch.backends.cuda.matmul.allow_tf32
            prev_allow_cudnn_tf32 = torch.backends.cudnn.allow_tf32
            # Enable TF32 for Ampere GPUs
            if torch.cuda.get_device_properties(0).major >= 8:
                torch.backends.cuda.matmul.allow_tf32 = True
                torch.backends.cudnn.allow_tf32 = True

        try:
            autocast_dtype = torch.bfloat16 if device == 'cuda' else torch.float32
            with torch.autocast(device_type=device, dtype=autocast_dtype):
                predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)
                frame_tensors = torch.from_numpy(np.array((self.imgs))).permute(0, 3, 1, 2).to(device)
                inference_state = predictor.init_state(video_path=frame_tensors)
                mask_list = [self.dynamic_masks[i] for i in range(self.n_imgs)]
                
                ann_obj_id = 1
                self.sam2_dynamic_masks = [[] for _ in range(self.n_imgs)]
        
                # Process even frames
                predictor.reset_state(inference_state)
                for idx, mask in enumerate(mask_list):
                    if idx % 2 == 1:
                        _, out_obj_ids, out_mask_logits = predictor.add_new_mask(
                            inference_state,
                            frame_idx=idx,
                            obj_id=ann_obj_id,
                            mask=mask,
                        )
                video_segments = {}
                for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
                    video_segments[out_frame_idx] = {
                        out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
                        for i, out_obj_id in enumerate(out_obj_ids)
                    }
                for out_frame_idx in range(self.n_imgs):
                    if out_frame_idx % 2 == 0:
                        self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
        
                # Process odd frames
                predictor.reset_state(inference_state)
                for idx, mask in enumerate(mask_list):
                    if idx % 2 == 0:
                        _, out_obj_ids, out_mask_logits = predictor.add_new_mask(
                            inference_state,
                            frame_idx=idx,
                            obj_id=ann_obj_id,
                            mask=mask,
                        )
                video_segments = {}
                for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
                    video_segments[out_frame_idx] = {
                        out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
                        for i, out_obj_id in enumerate(out_obj_ids)
                    }
                for out_frame_idx in range(self.n_imgs):
                    if out_frame_idx % 2 == 1:
                        self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
        
                # Update dynamic masks
                for i in range(self.n_imgs):
                    self.sam2_dynamic_masks[i] = torch.from_numpy(self.sam2_dynamic_masks[i][0]).to(device)
                    self.dynamic_masks[i] = self.dynamic_masks[i].to(device)
                    self.dynamic_masks[i] = self.dynamic_masks[i] | self.sam2_dynamic_masks[i]
        
                # Clean up
                del predictor
        finally:
            # Restore previous TF32 settings
            if device == 'cuda':
                torch.backends.cuda.matmul.allow_tf32 = prev_allow_tf32
                torch.backends.cudnn.allow_tf32 = prev_allow_cudnn_tf32


    def _check_all_imgs_are_selected(self, msk):
        self.msk = torch.from_numpy(np.array(msk, dtype=bool)).to(self.device)
        assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'
        pass

    def preset_pose(self, known_poses, pose_msk=None, requires_grad=False):  # cam-to-world
        self._check_all_imgs_are_selected(pose_msk)

        if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
            known_poses = [known_poses]
        if known_poses.shape[-1] == 7: # xyz wxyz
            known_poses = [tum_to_pose_matrix(pose) for pose in known_poses]
        for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
            if self.verbose:
                print(f' (setting pose #{idx} = {pose[:3,3]})')
            self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))

        # normalize scale if there's less than 1 known pose
        n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
        self.norm_pw_scale = (n_known_poses <= 1)
        if len(known_poses) == self.n_imgs:
            if requires_grad:
                self.im_poses.requires_grad_(True)
            else:
                self.im_poses.requires_grad_(False)
        self.norm_pw_scale = False

    def preset_intrinsics(self, known_intrinsics, msk=None):
        if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2:
            known_intrinsics = [known_intrinsics]
        for K in known_intrinsics:
            assert K.shape == (3, 3)
        self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk)
        if self.optimize_pp:
            self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk)

    def preset_focal(self, known_focals, msk=None, requires_grad=False):
        self._check_all_imgs_are_selected(msk)

        for idx, focal in zip(self._get_msk_indices(msk), known_focals):
            if self.verbose:
                print(f' (setting focal #{idx} = {focal})')
            self._no_grad(self._set_focal(idx, focal))
        if len(known_focals) == self.n_imgs:
            if requires_grad:
                self.im_focals.requires_grad_(True)
            else:
                self.im_focals.requires_grad_(False)

    def preset_principal_point(self, known_pp, msk=None):
        self._check_all_imgs_are_selected(msk)

        for idx, pp in zip(self._get_msk_indices(msk), known_pp):
            if self.verbose:
                print(f' (setting principal point #{idx} = {pp})')
            self._no_grad(self._set_principal_point(idx, pp))

        self.im_pp.requires_grad_(False)

    def _get_msk_indices(self, msk):
        if msk is None:
            return range(self.n_imgs)
        elif isinstance(msk, int):
            return [msk]
        elif isinstance(msk, (tuple, list)):
            return self._get_msk_indices(np.array(msk))
        elif msk.dtype in (bool, torch.bool, np.bool_):
            assert len(msk) == self.n_imgs
            return np.where(msk)[0]
        elif np.issubdtype(msk.dtype, np.integer):
            return msk
        else:
            raise ValueError(f'bad {msk=}')

    def _no_grad(self, tensor):
        assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'

    def _set_focal(self, idx, focal, force=False):
        param = self.im_focals[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = self.focal_break * np.log(focal)
        return param

    def get_focals(self):
        if self.shared_focal:
            log_focals = torch.stack([self.im_focals[0]] * self.n_imgs, dim=0)
        else:
            log_focals = torch.stack(list(self.im_focals), dim=0)
        return (log_focals / self.focal_break).exp()

    def get_known_focal_mask(self):
        return torch.tensor([not (p.requires_grad) for p in self.im_focals])

    def _set_principal_point(self, idx, pp, force=False):
        param = self.im_pp[idx]
        H, W = self.imshapes[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
        return param

    def get_principal_points(self):
        return self._pp + 10 * self.im_pp

    def get_intrinsics(self):
        K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
        focals = self.get_focals().flatten()
        K[:, 0, 0] = K[:, 1, 1] = focals
        K[:, :2, 2] = self.get_principal_points()
        K[:, 2, 2] = 1
        return K

    def get_im_poses(self):  # cam to world
        cam2world = self._get_poses(self.im_poses)
        return cam2world

    def _set_depthmap(self, idx, depth, force=False):
        depth = _ravel_hw(depth, self.max_area)

        param = self.im_depthmaps[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = depth.log().nan_to_num(neginf=0)
        return param
    
    def preset_depthmap(self, known_depthmaps, msk=None, requires_grad=False):
        self._check_all_imgs_are_selected(msk)

        for idx, depth in zip(self._get_msk_indices(msk), known_depthmaps):
            if self.verbose:
                print(f' (setting depthmap #{idx})')
            self._no_grad(self._set_depthmap(idx, depth))

        if len(known_depthmaps) == self.n_imgs:
            if requires_grad:
                self.im_depthmaps.requires_grad_(True)
            else:
                self.im_depthmaps.requires_grad_(False)
    
    def _set_init_depthmap(self):
        depth_maps = self.get_depthmaps(raw=True)
        self.init_depthmap = [dm.detach().clone() for dm in depth_maps]

    def get_init_depthmaps(self, raw=False):
        res = self.init_depthmap
        if not raw:
            res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def get_depthmaps(self, raw=False):
        res = self.im_depthmaps.exp()
        if not raw:
            res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def depth_to_pts3d(self):
        # Get depths and  projection params if not provided
        focals = self.get_focals()
        pp = self.get_principal_points()
        im_poses = self.get_im_poses()
        depth = self.get_depthmaps(raw=True)

        # get pointmaps in camera frame
        rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
        # project to world frame
        return geotrf(im_poses, rel_ptmaps)

    def depth_to_pts3d_partial(self):
        # Get depths and  projection params if not provided
        focals = self.get_focals()
        pp = self.get_principal_points()
        im_poses = self.get_im_poses()
        depth = self.get_depthmaps()

        # convert focal to (1,2,H,W) constant field
        def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i])
        # get pointmaps in camera frame
        rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])]
        # project to world frame
        return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)]
    
    def get_pts3d(self, raw=False, **kwargs):
        res = self.depth_to_pts3d()
        if not raw:
            res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def forward(self, epoch=9999):
        pw_poses = self.get_pw_poses()  # cam-to-world

        pw_adapt = self.get_adaptors().unsqueeze(1)
        proj_pts3d = self.get_pts3d(raw=True)

        # rotate pairwise prediction according to pw_poses
        aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
        aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)

        # compute the less
        li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
        lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j

        # camera temporal loss
        if self.temporal_smoothing_weight > 0:
            temporal_smoothing_loss = self.relative_pose_loss(self.get_im_poses()[:-1], self.get_im_poses()[1:]).sum()
        else:
            temporal_smoothing_loss = 0

        if self.flow_loss_weight > 0 and epoch >= self.num_total_iter * self.flow_loss_start_epoch: # enable flow loss after certain epoch
            R_all, T_all = self.get_im_poses()[:,:3].split([3, 1], dim=-1)
            R1, T1 = R_all[self._ei], T_all[self._ei]
            R2, T2 = R_all[self._ej], T_all[self._ej]
            K_all = self.get_intrinsics()
            inv_K_all = torch.linalg.inv(K_all)
            K_1, inv_K_1 = K_all[self._ei], inv_K_all[self._ei]
            K_2, inv_K_2 = K_all[self._ej], inv_K_all[self._ej]
            depth_all = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
            depth1, depth2 = depth_all[self._ei], depth_all[self._ej]
            disp_1, disp_2 = 1 / (depth1 + 1e-6), 1 / (depth2 + 1e-6)
            ego_flow_1_2, _ = self.depth_wrapper(R1, T1, R2, T2, disp_1, K_2, inv_K_1)
            ego_flow_2_1, _ = self.depth_wrapper(R2, T2, R1, T1, disp_2, K_1, inv_K_2)
            dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
            dynamic_mask1, dynamic_mask2 = dynamic_masks_all[self._ei], dynamic_masks_all[self._ej]

            flow_loss_i = self.flow_loss_fn(ego_flow_1_2[:, :2, ...], self.flow_ij, ~dynamic_mask1, per_pixel_thre=self.pxl_thre)
            flow_loss_j = self.flow_loss_fn(ego_flow_2_1[:, :2, ...], self.flow_ji, ~dynamic_mask2, per_pixel_thre=self.pxl_thre)
            flow_loss = flow_loss_i + flow_loss_j
            print(f'flow loss: {flow_loss.item()}')
            if flow_loss.item() > self.flow_loss_thre and self.flow_loss_thre > 0: 
                flow_loss = 0
                self.flow_loss_flag = True
        else:    
            flow_loss = 0

        if self.depth_regularize_weight > 0:
            init_depthmaps = torch.stack(self.get_init_depthmaps(raw=False)).unsqueeze(1)
            depthmaps = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
            dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
            depth_prior_loss = self.depth_regularizer(depthmaps, init_depthmaps, dynamic_masks_all)
        else:
            depth_prior_loss = 0

        loss = (li + lj) * 1 + self.temporal_smoothing_weight * temporal_smoothing_loss + \
                self.flow_loss_weight * flow_loss + self.depth_regularize_weight * depth_prior_loss

        return loss

    def relative_pose_loss(self, RT1, RT2):
        relative_RT = torch.matmul(torch.inverse(RT1), RT2)
        rotation_diff = relative_RT[:, :3, :3]
        translation_diff = relative_RT[:, :3, 3]

        # Frobenius norm for rotation difference
        rotation_loss = torch.norm(rotation_diff - (torch.eye(3, device=RT1.device)), dim=(1, 2))

        # L2 norm for translation difference
        translation_loss = torch.norm(translation_diff, dim=1)

        # Combined loss (one can weigh these differently if needed)
        pose_loss = rotation_loss + translation_loss * self.translation_weight
        return pose_loss

def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
    pp = pp.unsqueeze(1)
    focal = focal.unsqueeze(1)
    assert focal.shape == (len(depth), 1, 1)
    assert pp.shape == (len(depth), 1, 2)
    assert pixel_grid.shape == depth.shape + (2,)
    depth = depth.unsqueeze(-1)
    return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)


def ParameterStack(params, keys=None, is_param=None, fill=0):
    if keys is not None:
        params = [params[k] for k in keys]

    if fill > 0:
        params = [_ravel_hw(p, fill) for p in params]

    requires_grad = params[0].requires_grad
    assert all(p.requires_grad == requires_grad for p in params)

    params = torch.stack(list(params)).float().detach()
    if is_param or requires_grad:
        params = nn.Parameter(params)
        params.requires_grad_(requires_grad)
    return params


def _ravel_hw(tensor, fill=0):
    # ravel H,W
    tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])

    if len(tensor) < fill:
        tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
    return tensor


def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
    focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2))  # size / 1.1547005383792515
    return minf*focal_base, maxf*focal_base


def apply_mask(img, msk):
    img = img.copy()
    img[msk] = 0
    return img

def ordered_ratio(disp_a, disp_b, mask=None):
    ratio_a = torch.maximum(disp_a, disp_b) / \
        (torch.minimum(disp_a, disp_b)+1e-5)
    if mask is not None:
        ratio_a = ratio_a[mask]
    return ratio_a - 1