File size: 18,953 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

import os
import numpy as np
import quaternion
import habitat_sim
import json
from sklearn.neighbors import NearestNeighbors
import cv2

# OpenCV to habitat camera convention transformation
R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0)
R_HABITAT2OPENCV = R_OPENCV2HABITAT.T
DEG2RAD = np.pi / 180

def compute_camera_intrinsics(height, width, hfov):
    f = width/2 / np.tan(hfov/2 * np.pi/180)
    cu, cv = width/2, height/2
    return f, cu, cv

def compute_camera_pose_opencv_convention(camera_position, camera_orientation):
    R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT
    t_cam2world = np.asarray(camera_position)
    return R_cam2world, t_cam2world

def compute_pointmap(depthmap, hfov):
    """ Compute a HxWx3 pointmap in camera frame from a HxW depth map."""
    height, width = depthmap.shape
    f, cu, cv = compute_camera_intrinsics(height, width, hfov)
    # Cast depth map to point
    z_cam = depthmap
    u, v = np.meshgrid(range(width), range(height))
    x_cam = (u - cu) / f * z_cam
    y_cam = (v - cv) / f * z_cam
    X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1)
    return X_cam

def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation):
    """Return a 3D point cloud corresponding to valid pixels of the depth map"""
    R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation)

    X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov)
    valid_mask = (X_cam[:,:,2] != 0.0)

    X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()]
    X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3)
    return X_world

def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False):
    """
    Compute 'overlapping' metrics based on a distance threshold between two point clouds.
    """
    nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2)
    distances, indices = nbrs.kneighbors(pointcloud1)
    intersection1 = np.count_nonzero(distances.flatten() < distance_threshold)

    data = {"intersection1": intersection1,
            "size1": len(pointcloud1)}
    if compute_symmetric:
        nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1)
        distances, indices = nbrs.kneighbors(pointcloud2)
        intersection2 = np.count_nonzero(distances.flatten() < distance_threshold)
        data["intersection2"] = intersection2
        data["size2"] = len(pointcloud2)

    return data

def _append_camera_parameters(observation, hfov, camera_location, camera_rotation):
    """
    Add camera parameters to the observation dictionnary produced by Habitat-Sim
    In-place modifications.
    """
    R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation)
    height, width = observation['depth'].shape
    f, cu, cv = compute_camera_intrinsics(height, width, hfov)
    K = np.asarray([[f, 0, cu],
                    [0, f, cv],
                    [0, 0, 1.0]])
    observation["camera_intrinsics"] = K
    observation["t_cam2world"] = t_cam2world
    observation["R_cam2world"] = R_cam2world

def look_at(eye, center, up, return_cam2world=True):
    """
    Return camera pose looking at a given center point.
    Analogous of gluLookAt function, using OpenCV camera convention.
    """
    z = center - eye
    z /= np.linalg.norm(z, axis=-1, keepdims=True)
    y = -up
    y = y - np.sum(y * z, axis=-1, keepdims=True) * z
    y /= np.linalg.norm(y, axis=-1, keepdims=True)
    x = np.cross(y, z, axis=-1)

    if return_cam2world:
        R = np.stack((x, y, z), axis=-1)
        t = eye
    else:
        # World to camera transformation
        # Transposed matrix
        R = np.stack((x, y, z), axis=-2)
        t = - np.einsum('...ij, ...j', R, eye)
    return R, t

def look_at_for_habitat(eye, center, up, return_cam2world=True):
    R, t = look_at(eye, center, up)
    orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T)
    return orientation, t

def generate_orientation_noise(pan_range, tilt_range, roll_range):
    return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP)
            * quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT)
            * quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT))


class NoNaviguableSpaceError(RuntimeError):
    def __init__(self, *args):
            super().__init__(*args)

class MultiviewHabitatSimGenerator:
    def __init__(self,
                scene,
                navmesh,
                scene_dataset_config_file,
                resolution = (240, 320),
                views_count=2,
                hfov = 60,
                gpu_id = 0,
                size = 10000,
                minimum_covisibility = 0.5,
                transform = None):
        self.scene = scene
        self.navmesh = navmesh
        self.scene_dataset_config_file = scene_dataset_config_file
        self.resolution = resolution
        self.views_count = views_count
        assert(self.views_count >= 1)
        self.hfov = hfov
        self.gpu_id = gpu_id
        self.size = size
        self.transform = transform

        # Noise added to camera orientation
        self.pan_range = (-3, 3)
        self.tilt_range = (-10, 10)
        self.roll_range = (-5, 5)

        # Height range to sample cameras
        self.height_range = (1.2, 1.8)

        # Random steps between the camera views
        self.random_steps_count = 5
        self.random_step_variance = 2.0

        # Minimum fraction of the scene which should be valid (well defined depth)
        self.minimum_valid_fraction = 0.7

        # Distance threshold to see  to select pairs
        self.distance_threshold = 0.05
        # Minimum IoU of a view point cloud with respect to the reference view to be kept.
        self.minimum_covisibility = minimum_covisibility

        # Maximum number of retries.
        self.max_attempts_count = 100

        self.seed = None
        self._lazy_initialization()

    def _lazy_initialization(self):
        # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly
        if self.seed == None:
            # Re-seed numpy generator
            np.random.seed()
            self.seed = np.random.randint(2**32-1)
            sim_cfg = habitat_sim.SimulatorConfiguration()
            sim_cfg.scene_id = self.scene
            if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "":
                    sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file
            sim_cfg.random_seed = self.seed
            sim_cfg.load_semantic_mesh = False
            sim_cfg.gpu_device_id = self.gpu_id

            depth_sensor_spec = habitat_sim.CameraSensorSpec()
            depth_sensor_spec.uuid = "depth"
            depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH
            depth_sensor_spec.resolution = self.resolution
            depth_sensor_spec.hfov = self.hfov
            depth_sensor_spec.position = [0.0, 0.0, 0]
            depth_sensor_spec.orientation

            rgb_sensor_spec = habitat_sim.CameraSensorSpec()
            rgb_sensor_spec.uuid = "color"
            rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR
            rgb_sensor_spec.resolution = self.resolution
            rgb_sensor_spec.hfov = self.hfov
            rgb_sensor_spec.position = [0.0, 0.0, 0]
            agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec])

            cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])
            self.sim = habitat_sim.Simulator(cfg)
            if self.navmesh is not None and self.navmesh != "":
                # Use pre-computed navmesh when available (usually better than those generated automatically)
                self.sim.pathfinder.load_nav_mesh(self.navmesh)

            if not self.sim.pathfinder.is_loaded:
                # Try to compute a navmesh
                navmesh_settings = habitat_sim.NavMeshSettings()
                navmesh_settings.set_defaults()
                self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True)

            # Ensure that the navmesh is not empty
            if not self.sim.pathfinder.is_loaded:
                raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})")

            self.agent = self.sim.initialize_agent(agent_id=0)

    def close(self):
        self.sim.close()

    def __del__(self):
        self.sim.close()

    def __len__(self):
        return self.size

    def sample_random_viewpoint(self):
        """ Sample a random viewpoint using the navmesh """
        nav_point = self.sim.pathfinder.get_random_navigable_point()

        # Sample a random viewpoint height
        viewpoint_height = np.random.uniform(*self.height_range)
        viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP
        viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
        return viewpoint_position, viewpoint_orientation, nav_point

    def sample_other_random_viewpoint(self, observed_point, nav_point):
        """ Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point."""
        other_nav_point = nav_point

        walk_directions = self.random_step_variance * np.asarray([1,0,1])
        for i in range(self.random_steps_count):
            temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3))
            # Snapping may return nan when it fails
            if not np.isnan(temp[0]):
                    other_nav_point = temp

        other_viewpoint_height = np.random.uniform(*self.height_range)
        other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP

        # Set viewing direction towards the central point
        rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True)
        rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
        return position, rotation, other_nav_point

    def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud):
        """ Check if a viewpoint is valid and overlaps significantly with a reference one. """
        # Observation
        pixels_count = self.resolution[0] * self.resolution[1]
        valid_fraction = len(other_pointcloud) / pixels_count
        assert valid_fraction <= 1.0 and valid_fraction >= 0.0
        overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True)
        covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count)
        is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility)
        return is_valid, valid_fraction, covisibility

    def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation):
        """ Check if a viewpoint is valid and overlaps significantly with a reference one. """
        # Observation
        other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation)
        return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)

    def render_viewpoint(self, viewpoint_position, viewpoint_orientation):
        agent_state = habitat_sim.AgentState()
        agent_state.position = viewpoint_position
        agent_state.rotation = viewpoint_orientation
        self.agent.set_state(agent_state)
        viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0)
        _append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation)
        return viewpoint_observations

    def __getitem__(self, useless_idx):
        ref_position, ref_orientation, nav_point = self.sample_random_viewpoint()
        ref_observations = self.render_viewpoint(ref_position, ref_orientation)
        # Extract point cloud
        ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
                                        camera_position=ref_position, camera_rotation=ref_orientation)

        pixels_count = self.resolution[0] * self.resolution[1]
        ref_valid_fraction = len(ref_pointcloud) / pixels_count
        assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0
        if ref_valid_fraction < self.minimum_valid_fraction:
                # This should produce a recursion error at some point when something is very wrong.
                return self[0]
        # Pick an reference observed point in the point cloud
        observed_point = np.mean(ref_pointcloud, axis=0)

        # Add the first image as reference
        viewpoints_observations = [ref_observations]
        viewpoints_covisibility = [ref_valid_fraction]
        viewpoints_positions = [ref_position]
        viewpoints_orientations = [quaternion.as_float_array(ref_orientation)]
        viewpoints_clouds = [ref_pointcloud]
        viewpoints_valid_fractions = [ref_valid_fraction]

        for _ in range(self.views_count - 1):
            # Generate an other viewpoint using some dummy random walk
            successful_sampling = False
            for sampling_attempt in range(self.max_attempts_count):
                position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point)
                # Observation
                other_viewpoint_observations = self.render_viewpoint(position, rotation)
                other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation)

                is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
                if is_valid:
                        successful_sampling = True
                        break
            if not successful_sampling:
                print("WARNING: Maximum number of attempts reached.")
                # Dirty hack, try using a novel original viewpoint
                return self[0]
            viewpoints_observations.append(other_viewpoint_observations)
            viewpoints_covisibility.append(covisibility)
            viewpoints_positions.append(position)
            viewpoints_orientations.append(quaternion.as_float_array(rotation)) # WXYZ convention for the quaternion encoding.
            viewpoints_clouds.append(other_pointcloud)
            viewpoints_valid_fractions.append(valid_fraction)

        # Estimate relations between all pairs of images
        pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations)))
        for i in range(len(viewpoints_observations)):
            pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i]
            for j in range(i+1, len(viewpoints_observations)):
                overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True)
                pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count
                pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count

        # IoU is relative to the image 0
        data = {"observations": viewpoints_observations,
                "positions": np.asarray(viewpoints_positions),
                "orientations": np.asarray(viewpoints_orientations),
                "covisibility_ratios": np.asarray(viewpoints_covisibility),
                "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float),
                "pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float),
                }

        if self.transform is not None:
            data = self.transform(data)
        return  data

    def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False):
        """
        Return a list of images corresponding to a spiral trajectory from a random starting point.
        Useful to generate nice visualisations.
        Use an even number of half turns to get a nice "C1-continuous" loop effect 
        """
        ref_position, ref_orientation, navpoint = self.sample_random_viewpoint()
        ref_observations = self.render_viewpoint(ref_position, ref_orientation)
        ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
                                                        camera_position=ref_position, camera_rotation=ref_orientation)
        pixels_count = self.resolution[0] * self.resolution[1]
        if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction:
            # Dirty hack: ensure that the valid part of the image is significant
            return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation)

        # Pick an observed point in the point cloud
        observed_point = np.mean(ref_pointcloud, axis=0)
        ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation)

        images = []
        is_valid = []
        # Spiral trajectory, use_constant orientation
        for i, alpha in enumerate(np.linspace(0, 1, images_count)):
            r = max_radius * np.abs(np.sin(alpha * np.pi)) # Increase then decrease the radius
            theta = alpha * half_turns * np.pi 
            x = r * np.cos(theta)
            y = r * np.sin(theta)
            z = 0.0
            position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten()
            if use_constant_orientation:
                orientation = ref_orientation
            else:
                # trajectory looking at a mean point in front of the ref observation
                orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP)
            observations = self.render_viewpoint(position, orientation)
            images.append(observations['color'][...,:3])
            _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation)
            is_valid.append(_is_valid)
        return images, np.all(is_valid)