File size: 17,705 Bytes
f53b39e 04d1115 f53b39e 04d1115 f53b39e 04d1115 f53b39e 0d3f4b5 04d1115 f53b39e 472e9c4 f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions about images (loading/converting...)
# --------------------------------------------------------
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2 # noqa
import glob
import imageio
import matplotlib.pyplot as plt
try:
from pillow_heif import register_heif_opener # noqa
register_heif_opener()
heif_support_enabled = True
except ImportError:
heif_support_enabled = False
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
ToTensor = tvf.ToTensor()
TAG_FLOAT = 202021.25
def depth_read(filename):
""" Read depth data from file, return as numpy array. """
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def cam_read(filename):
""" Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
return M,N
def flow_read(filename):
""" Read optical flow from file, return (U,V) tuple.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' flow_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' flow_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
tmp = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width*2))
u = tmp[:,np.arange(width)*2]
v = tmp[:,np.arange(width)*2 + 1]
return u,v
def img_to_arr( img ):
if isinstance(img, str):
img = imread_cv2(img)
return img
def imread_cv2(path, options=cv2.IMREAD_COLOR):
""" Open an image or a depthmap with opencv-python.
"""
if path.endswith(('.exr', 'EXR')):
options = cv2.IMREAD_ANYDEPTH
img = cv2.imread(path, options)
if img is None:
raise IOError(f'Could not load image={path} with {options=}')
if img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def rgb(ftensor, true_shape=None):
if isinstance(ftensor, list):
return [rgb(x, true_shape=true_shape) for x in ftensor]
if isinstance(ftensor, torch.Tensor):
ftensor = ftensor.detach().cpu().numpy() # H,W,3
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
ftensor = ftensor.transpose(1, 2, 0)
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
ftensor = ftensor.transpose(0, 2, 3, 1)
if true_shape is not None:
H, W = true_shape
ftensor = ftensor[:H, :W]
if ftensor.dtype == np.uint8:
img = np.float32(ftensor) / 255
else:
img = (ftensor * 0.5) + 0.5
return img.clip(min=0, max=1)
def _resize_pil_image(img, long_edge_size, nearest=False):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS if not nearest else PIL.Image.NEAREST
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def resize_numpy_image(img, long_edge_size):
"""
Resize the NumPy image to a specified long edge size using OpenCV.
Args:
img (numpy.ndarray): Input image with shape (H, W, C).
long_edge_size (int): The size of the long edge after resizing.
Returns:
numpy.ndarray: The resized image.
"""
# Get the original dimensions of the image
h, w = img.shape[:2]
S = max(h, w)
# Choose interpolation method
if S > long_edge_size:
interp = cv2.INTER_LANCZOS4
else:
interp = cv2.INTER_CUBIC
# Calculate the new size
new_size = (int(round(w * long_edge_size / S)), int(round(h * long_edge_size / S)))
# Resize the image
resized_img = cv2.resize(img, new_size, interpolation=interp)
return resized_img
def crop_center(img, crop_width, crop_height):
"""
Crop the center of the image.
Args:
img (numpy.ndarray): Input image with shape (H, W) or (H, W, C).
crop_width (int): The width of the cropped area.
crop_height (int): The height of the cropped area.
Returns:
numpy.ndarray: The cropped image.
"""
h, w = img.shape[:2]
cx, cy = h // 2, w // 2
x1 = max(cx - crop_height // 2, 0)
x2 = min(cx + crop_height // 2, h)
y1 = max(cy - crop_width // 2, 0)
y2 = min(cy + crop_width // 2, w)
cropped_img = img[x1:x2, y1:y2]
return cropped_img
def crop_img(img, size, pred_depth=None, square_ok=False, nearest=False, crop=True):
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)), nearest=nearest)
if pred_depth is not None:
pred_depth = resize_numpy_image(pred_depth, round(size * max(W1 / H1, H1 / W1)))
else:
# resize long side to 512
img = _resize_pil_image(img, size, nearest=nearest)
if pred_depth is not None:
pred_depth = resize_numpy_image(pred_depth, size)
W, H = img.size
cx, cy = W//2, H//2
if size == 224:
half = min(cx, cy)
img = img.crop((cx-half, cy-half, cx+half, cy+half))
if pred_depth is not None:
pred_depth = crop_center(pred_depth, 2 * half, 2 * half)
else:
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
if not (square_ok) and W == H:
halfh = 3*halfw/4
if crop:
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
if pred_depth is not None:
pred_depth = crop_center(pred_depth, 2 * halfw, 2 * halfh)
else: # resize
img = img.resize((2*halfw, 2*halfh), PIL.Image.LANCZOS)
if pred_depth is not None:
pred_depth = cv2.resize(pred_depth, (2*halfw, 2*halfh), interpolation=cv2.INTER_CUBIC)
return img, pred_depth
def pixel_to_pointcloud(depth_map, focal_length_px):
"""
Convert a depth map to a 3D point cloud.
Args:
depth_map (numpy.ndarray): The input depth map with shape (H, W), where each value represents the depth at that pixel.
focal_length_px (float): The focal length of the camera in pixels.
Returns:
numpy.ndarray: The resulting point cloud with shape (H, W, 3), where each point is represented by (X, Y, Z).
"""
height, width = depth_map.shape
cx = width / 2
cy = height / 2
# Create meshgrid for pixel coordinates
u = np.arange(width)
v = np.arange(height)
u, v = np.meshgrid(u, v)
#depth_map[depth_map>100]=0
# Convert pixel coordinates to camera coordinates
Z = depth_map
X = (u - cx) * Z / focal_length_px
Y = (v - cy) * Z / focal_length_px
# Stack the coordinates into a point cloud (H, W, 3)
point_cloud = np.dstack((X, Y, Z)).astype(np.float32)
point_cloud = normalize_pointcloud(point_cloud)
# Optional: Filter out invalid depth values (if necessary)
# point_cloud = point_cloud[depth_map > 0]
#print(point_cloud)
return point_cloud
def normalize_pointcloud(point_cloud):
min_vals = np.min(point_cloud, axis=(0, 1))
max_vals = np.max(point_cloud, axis=(0, 1))
#print(min_vals, max_vals)
normalized_point_cloud = (point_cloud - min_vals) / (max_vals - min_vals)
return normalized_point_cloud
def load_images(folder_or_list, depth_list, focallength_px_list, size, square_ok=False, verbose=True, dynamic_mask_root=None, crop=True, fps=0, traj_format="sintel", start=0, interval=30, depth_prior_name='depthpro'):
"""Open and convert all images or videos in a list or folder to proper input format for DUSt3R."""
if isinstance(folder_or_list, str):
if verbose:
print(f'>> Loading images from {folder_or_list}')
# if folder_or_list is a folder, load all images in the folder
if os.path.isdir(folder_or_list):
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
else: # the folder_content will be the folder_or_list itself
root, folder_content = '', [folder_or_list]
elif isinstance(folder_or_list, list):
if verbose:
print(f'>> Loading a list of {len(folder_or_list)} items')
root, folder_content = '', folder_or_list
else:
raise ValueError(f'Bad input {folder_or_list=} ({type(folder_or_list)})')
supported_images_extensions = ['.jpg', '.jpeg', '.png']
supported_video_extensions = ['.mp4', '.avi', '.mov']
if heif_support_enabled:
supported_images_extensions += ['.heic', '.heif']
supported_images_extensions = tuple(supported_images_extensions)
supported_video_extensions = tuple(supported_video_extensions)
imgs = []
# Sort items by their names
#start = 0
#folder_content = sorted(folder_content, key=lambda x: x.split('/')[-1])[start : start + interval]
# print(start,interval,len(folder_content))
for i, path in enumerate(folder_content):
full_path = os.path.join(root, path)
if path.lower().endswith(supported_images_extensions):
# Process image files
img = exif_transpose(PIL.Image.open(full_path)).convert('RGB')
pred_depth1 = depth_list[i]
focal_length_px = focallength_px_list[i]
if len(pred_depth1.shape) == 3:
pred_depth1 = np.squeeze(pred_depth1)
pred_depth = pixel_to_pointcloud(pred_depth1, focal_length_px)
W1, H1 = img.size
img, pred_depth = crop_img(img, size, pred_depth, square_ok=square_ok, crop=crop)
W2, H2 = img.size
if verbose:
print(f' - Adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
single_dict = dict(
img=ImgNorm(img)[None],
pred_depth=pred_depth[None,...],
true_shape=np.int32([img.size[::-1]]),
idx=len(imgs),
instance=full_path,
mask=~(ToTensor(img)[None].sum(1) <= 0.01)
)
if dynamic_mask_root is not None:
dynamic_mask_path = os.path.join(dynamic_mask_root, os.path.basename(path))
# else: # Sintel dataset handling
# dynamic_mask_path = full_path.replace('final', 'dynamic_label_perfect').replace('clean', 'dynamic_label_perfect').replace('MPI-Sintel-training_images','MPI-Sintel-depth-training')
#print(dynamic_mask_path)
if os.path.exists(dynamic_mask_path):
dynamic_mask = PIL.Image.open(dynamic_mask_path).convert('L')
dynamic_mask, _ = crop_img(dynamic_mask, size, square_ok=square_ok)
#print(dynamic_mask)
dynamic_mask = ToTensor(dynamic_mask)[None].sum(1) > 0.99 # "1" means dynamic
single_dict['dynamic_mask'] = dynamic_mask
# if dynamic_mask.sum() < 0.8 * dynamic_mask.numel(): # Consider static if over 80% is dynamic
# single_dict['dynamic_mask'] = dynamic_mask
# else:
# single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask'])
else:
single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask'])
imgs.append(single_dict)
elif path.lower().endswith(supported_video_extensions):
# Process video files
if verbose:
print(f'>> Loading video from {full_path}')
cap = cv2.VideoCapture(full_path)
if not cap.isOpened():
print(f'Error opening video file {full_path}')
continue
video_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if video_fps == 0:
print(f'Error: Video FPS is 0 for {full_path}')
cap.release()
continue
if fps > 0:
frame_interval = max(1, int(round(video_fps / fps)))
else:
frame_interval = 1
frame_indices = list(range(0, total_frames, frame_interval))
if interval is not None:
frame_indices = frame_indices[:interval]
if verbose:
print(f' - Video FPS: {video_fps}, Frame Interval: {frame_interval}, Total Frames to Read: {len(frame_indices)}')
for frame_idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
ret, frame = cap.read()
if not ret:
break # End of video
img = PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
W1, H1 = img.size
img, _ = crop_img(img, size, square_ok=square_ok, crop=crop)
W2, H2 = img.size
if verbose:
print(f' - Adding frame {frame_idx} from {path} with resolution {W1}x{H1} --> {W2}x{H2}')
single_dict = dict(
img=ImgNorm(img)[None],
true_shape=np.int32([img.size[::-1]]),
idx=len(imgs),
instance=f'{full_path}_frame_{frame_idx}',
mask=~(ToTensor(img)[None].sum(1) <= 0.01)
)
# Dynamic masks for video frames are set to zeros by default
single_dict['dynamic_mask'] = torch.zeros_like(single_dict['mask'])
imgs.append(single_dict)
cap.release()
else:
continue # Skip unsupported file types
assert imgs, 'No images found at ' + root
if verbose:
print(f' (Found {len(imgs)} images)')
return imgs
def enlarge_seg_masks(folder, kernel_size=5, prefix="dynamic_mask"):
mask_pathes = glob.glob(f'{folder}/{prefix}_*.png')
for mask_path in mask_pathes:
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
kernel = np.ones((kernel_size, kernel_size),np.uint8)
enlarged_mask = cv2.dilate(mask, kernel, iterations=1)
cv2.imwrite(mask_path.replace(prefix, 'enlarged_dynamic_mask'), enlarged_mask)
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 1 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def get_overlaied_gif(folder, img_format="frame_*.png", mask_format="dynamic_mask_*.png", output_path="_overlaied.gif"):
img_paths = glob.glob(f'{folder}/{img_format}')
mask_paths = glob.glob(f'{folder}/{mask_format}')
assert len(img_paths) == len(mask_paths), f"Number of images and masks should be the same, got {len(img_paths)} images and {len(mask_paths)} masks"
img_paths = sorted(img_paths)
mask_paths = sorted(mask_paths, key=lambda x: int(x.split('_')[-1].split('.')[0]))
frames = []
for img_path, mask_path in zip(img_paths, mask_paths):
# Read image and convert to RGB for Matplotlib
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Read mask and normalize
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask = mask.astype(np.float32) / 255.0
# Create figure and axis
fig, ax = plt.subplots(figsize=(img.shape[1]/100, img.shape[0]/100), dpi=100)
ax.imshow(img)
# Overlay mask using show_mask
show_mask(mask, ax)
ax.axis('off')
# Render the figure to a numpy array
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
frames.append(img_array)
plt.close(fig) # Close the figure to free memory
# Save frames as a GIF using imageio
imageio.mimsave(os.path.join(folder,output_path), frames, fps=10)
|