File size: 7,089 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for preprocessed Co3d_v2
# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International
# See datasets_preprocess/preprocess_co3d.py
# --------------------------------------------------------
import os.path as osp
import json
import itertools
from collections import deque

import cv2
import numpy as np

from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2


class Co3d(BaseStereoViewDataset):
    def __init__(self, mask_bg=True, *args, ROOT, **kwargs):
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        assert mask_bg in (True, False, 'rand')
        self.mask_bg = mask_bg
        self.dataset_label = 'Co3d_v2'

        # load all scenes
        with open(osp.join(self.ROOT, f'selected_seqs_{self.split}.json'), 'r') as f:
            self.scenes = json.load(f)
            self.scenes = {k: v for k, v in self.scenes.items() if len(v) > 0}
            self.scenes = {(k, k2): v2 for k, v in self.scenes.items()
                           for k2, v2 in v.items()}
        self.scene_list = list(self.scenes.keys())

        # for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees)
        # we prepare all combinations such that i-j = +/- [5, 10, .., 90] degrees
        self.combinations = [(i, j)
                             for i, j in itertools.combinations(range(100), 2)
                             if 0 < abs(i - j) <= 30 and abs(i - j) % 5 == 0]

        self.invalidate = {scene: {} for scene in self.scene_list}

    def __len__(self):
        return len(self.scene_list) * len(self.combinations)

    def _get_metadatapath(self, obj, instance, view_idx):
        return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.npz')

    def _get_impath(self, obj, instance, view_idx):
        return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.jpg')

    def _get_depthpath(self, obj, instance, view_idx):
        return osp.join(self.ROOT, obj, instance, 'depths', f'frame{view_idx:06n}.jpg.geometric.png')

    def _get_maskpath(self, obj, instance, view_idx):
        return osp.join(self.ROOT, obj, instance, 'masks', f'frame{view_idx:06n}.png')

    def _read_depthmap(self, depthpath, input_metadata):
        depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
        depthmap = (depthmap.astype(np.float32) / 65535) * np.nan_to_num(input_metadata['maximum_depth'])
        return depthmap

    def _get_views(self, idx, resolution, rng):
        # choose a scene
        obj, instance = self.scene_list[idx // len(self.combinations)]
        image_pool = self.scenes[obj, instance]
        im1_idx, im2_idx = self.combinations[idx % len(self.combinations)]

        # add a bit of randomness
        last = len(image_pool) - 1

        if resolution not in self.invalidate[obj, instance]:  # flag invalid images
            self.invalidate[obj, instance][resolution] = [False for _ in range(len(image_pool))]

        # decide now if we mask the bg
        mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2))

        views = []
        imgs_idxs = [max(0, min(im_idx + rng.integers(-4, 5), last)) for im_idx in [im2_idx, im1_idx]]
        imgs_idxs = deque(imgs_idxs)
        while len(imgs_idxs) > 0:  # some images (few) have zero depth
            im_idx = imgs_idxs.pop()

            if self.invalidate[obj, instance][resolution][im_idx]:
                # search for a valid image
                random_direction = 2 * rng.choice(2) - 1
                for offset in range(1, len(image_pool)):
                    tentative_im_idx = (im_idx + (random_direction * offset)) % len(image_pool)
                    if not self.invalidate[obj, instance][resolution][tentative_im_idx]:
                        im_idx = tentative_im_idx
                        break

            view_idx = image_pool[im_idx]

            impath = self._get_impath(obj, instance, view_idx)
            depthpath = self._get_depthpath(obj, instance, view_idx)

            # load camera params
            metadata_path = self._get_metadatapath(obj, instance, view_idx)
            input_metadata = np.load(metadata_path)
            camera_pose = input_metadata['camera_pose'].astype(np.float32)
            intrinsics = input_metadata['camera_intrinsics'].astype(np.float32)

            # load image and depth
            rgb_image = imread_cv2(impath)
            depthmap = self._read_depthmap(depthpath, input_metadata)

            if mask_bg:
                # load object mask
                maskpath = self._get_maskpath(obj, instance, view_idx)
                maskmap = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32)
                maskmap = (maskmap / 255.0) > 0.1

                # update the depthmap with mask
                depthmap *= maskmap

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)

            num_valid = (depthmap > 0.0).sum()
            if num_valid == 0:
                # problem, invalidate image and retry
                self.invalidate[obj, instance][resolution][im_idx] = True
                imgs_idxs.append(im_idx)
                continue

            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset=self.dataset_label,
                label=osp.join(obj, instance),
                instance=osp.split(impath)[1],
            ))
        return views


if __name__ == "__main__":
    from dust3r.datasets.base.base_stereo_view_dataset import view_name
    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb

    dataset = Co3d(split='train', ROOT="data/co3d_subset_processed", resolution=224, aug_crop=16)

    for idx in np.random.permutation(len(dataset)):
        views = dataset[idx]
        assert len(views) == 2
        print(view_name(views[0]), view_name(views[1]))
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.001)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
            viz.add_pointcloud(pts3d, colors, valid_mask)
            viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
                           focal=views[view_idx]['camera_intrinsics'][0, 0],
                           color=(idx * 255, (1 - idx) * 255, 0),
                           image=colors,
                           cam_size=cam_size)
        viz.show()