File size: 7,038 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for Spring
# --------------------------------------------------------
import os.path as osp
from glob import glob
import itertools
import numpy as np
import re
import cv2
import os
import sys
sys.path.append('/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train')
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2
TAG_FLOAT = 202021.25
def depth_read(filename):
    """Read depth data from file, return as numpy array."""
    f = open(filename, "rb")
    check = np.fromfile(f, dtype=np.float32, count=1)[0]
    assert (
        check == TAG_FLOAT
    ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
        TAG_FLOAT, check
    )
    width = np.fromfile(f, dtype=np.int32, count=1)[0]
    height = np.fromfile(f, dtype=np.int32, count=1)[0]
    size = width * height
    assert (
        width > 0 and height > 0 and size > 1 and size < 100000000
    ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
        width, height
    )
    depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
    return depth

def cam_read(filename):
    """ Read camera data, return (M,N) tuple.
    
    M is the intrinsic matrix, N is the extrinsic matrix, so that

    x = M*N*X,
    with x being a point in homogeneous image pixel coordinates, X being a
    point in homogeneous world coordinates.
    """
    f = open(filename,'rb')
    check = np.fromfile(f,dtype=np.float32,count=1)[0]
    assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
    M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
    N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
    return M,N

class SintelDatasets(BaseStereoViewDataset):
    def __init__(self, *args, split, ROOT, **kwargs):
        self.ROOT = ROOT                        # ROOT = "/media/8TB/tyhuang/video_depth/vkitti_2.0.3_proc"
        super().__init__(*args, **kwargs)

        self.dataset_label = 'Sintel'
        test_scenes = []

        scene_list = []
        for scene in os.listdir(ROOT):
            scene_list.append(osp.join(ROOT, scene))

        self.pair_dict = {}
        pair_num = 0
        for scene in scene_list:
            imgs = sorted(glob(osp.join(scene, '*.png')))

            len_imgs = len(imgs)
            # combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)
            #                 if abs(i - j) <= 15 or (abs(i - j) <= 30 and abs(i - j) % 5 == 0)]
            combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 3]

            for (i, j) in combinations:
                self.pair_dict[pair_num] = [imgs[i], imgs[j]]
                pair_num += 1

    def __len__(self):
        return len(self.pair_dict)


    def _get_views(self, idx, resolution, rng):

        views = []
        for img_path in self.pair_dict[idx]:
            rgb_image = imread_cv2(img_path)

            depthmap_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','depth/').replace('.png','.dpt')
            mask_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','dynamic_label_perfect/')
            metadata_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','camdata_left/').replace('.png','.cam')
            
            pred_depth = np.load(img_path.replace('final','depth_prediction_' + self.depth_prior_name).replace('.png', '.npz'))#['depth']
            focal_length_px = pred_depth['focallength_px']
            pred_depth = pred_depth['depth']
            pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px)
            depthmap = depth_read(depthmap_path)
            if os.path.exists(mask_path):
              maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
              maskmap = (maskmap / 255.0) > 0.1
              #print(maskmap.max())
              #maskmap = maskmap * (depthmap<100)
              depthmap *= maskmap
            intrinsics, extrinsics = cam_read(metadata_path)
            intrinsics, extrinsics = np.array(intrinsics, dtype=np.float32), np.array(extrinsics, dtype=np.float32)
            R = extrinsics[:3,:3]
            t = extrinsics[:3,3]
            camera_pose = np.eye(4, dtype=np.float32)
            camera_pose[:3,:3] = R.T
            camera_pose[:3,3] = -R.T @ t
            #camera_pose = np.linalg.inv(camera_pose)
            # max_depth = np.float32(metadata['maximum_depth'])

            # depthmap = (depthmap.astype(np.float32) / 20.0)
            # camera_pose[:3, 3] /= 20.0
            # pred_depth = pred_depth/20.0
            rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path)

            num_valid = (depthmap > 0.0).sum()
            # assert num_valid > 0
            # if num_valid==0:
            #   depthmap +=0.001
            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset=self.dataset_label,
                label=img_path,
                instance=img_path,
                pred_depth=pred_depth
            ))
        return views


if __name__ == "__main__":
    from dust3r.datasets.base.base_stereo_view_dataset import view_name
    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb

    dataset = SintelDatasets(split='train', ROOT="/data/lipeng/ljh_data/MPI-Sintel/MPI-Sintel/MPI-Sintel-training_images/training/final", resolution=512, aug_crop=16)

    a = len(dataset)
    for idx in np.random.permutation(len(dataset)):
        views = dataset[idx]
        assert len(views) == 2
        print(view_name(views[0]), view_name(views[1]))
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.001)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
        #     viz.add_pointcloud(pts3d, colors, valid_mask)
        #     viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
        #                    focal=views[view_idx]['camera_intrinsics'][0, 0],
        #                    color=(idx * 255, (1 - idx) * 255, 0),
        #                    image=colors,
        #                    cam_size=cam_size)
        # viz.show()