File size: 7,601 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# croppping utilities
# --------------------------------------------------------
import PIL.Image
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2  # noqa
import numpy as np  # noqa
from dust3r.utils.geometry import colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics  # noqa
try:
    lanczos = PIL.Image.Resampling.LANCZOS
    bicubic = PIL.Image.Resampling.BICUBIC
except AttributeError:
    lanczos = PIL.Image.LANCZOS
    bicubic = PIL.Image.BICUBIC


class ImageList:
    """ Convenience class to aply the same operation to a whole set of images.
    """

    def __init__(self, images):
        if not isinstance(images, (tuple, list, set)):
            images = [images]
        self.images = []
        for image in images:
            if not isinstance(image, PIL.Image.Image):
                image = PIL.Image.fromarray(image)
            self.images.append(image)

    def __len__(self):
        return len(self.images)

    def to_pil(self):
        return tuple(self.images) if len(self.images) > 1 else self.images[0]

    @property
    def size(self):
        sizes = [im.size for im in self.images]
        assert all(sizes[0] == s for s in sizes)
        return sizes[0]

    def resize(self, *args, **kwargs):
        return ImageList(self._dispatch('resize', *args, **kwargs))

    def crop(self, *args, **kwargs):
        return ImageList(self._dispatch('crop', *args, **kwargs))

    def _dispatch(self, func, *args, **kwargs):
        return [getattr(im, func)(*args, **kwargs) for im in self.images]


def rescale_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, output_resolution, force=True):
    """ Jointly rescale a (image, depthmap) 
        so that (out_width, out_height) >= output_res
    """
    image = ImageList(image)
    input_resolution = np.array(image.size)  # (W,H)
    output_resolution = np.array(output_resolution)
    if depthmap is not None:
        # can also use this with masks instead of depthmaps
        assert tuple(depthmap.shape[:2]) == image.size[::-1]
    if pred_depth is not None:
        # can also use this with masks instead of depthmaps
        assert tuple(pred_depth.shape[:2]) == image.size[::-1]
    # define output resolution
    assert output_resolution.shape == (2,)
    scale_final = max(output_resolution / image.size) + 1e-8
    if scale_final >= 1 and not force:  # image is already smaller than what is asked
        return (image.to_pil(), depthmap, pred_depth, camera_intrinsics)
    output_resolution = np.floor(input_resolution * scale_final).astype(int)
    output_resolution = list(output_resolution)
    # first rescale the image so that it contains the crop
    image = image.resize(output_resolution, resample=lanczos if scale_final < 1 else bicubic)
    if depthmap is not None:
        depthmap = cv2.resize(depthmap, output_resolution, fx=scale_final,
                              fy=scale_final, interpolation=cv2.INTER_NEAREST)
    if pred_depth is not None:
        pred_depth = cv2.resize(pred_depth, output_resolution, fx=scale_final,
                              fy=scale_final, interpolation=cv2.INTER_NEAREST)

    # no offset here; simple rescaling
    camera_intrinsics = camera_matrix_of_crop(
        camera_intrinsics, input_resolution, output_resolution, scaling=scale_final)

    return image.to_pil(), depthmap, pred_depth, camera_intrinsics


def camera_matrix_of_crop(input_camera_matrix, input_resolution, output_resolution, scaling=1, offset_factor=0.5, offset=None):
    # Margins to offset the origin
    margins = np.asarray(input_resolution) * scaling - output_resolution
    assert np.all(margins >= 0.0)
    if offset is None:
        offset = offset_factor * margins

    # Generate new camera parameters
    output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
    output_camera_matrix_colmap[:2, :] *= scaling
    output_camera_matrix_colmap[:2, 2] -= offset
    output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)

    return output_camera_matrix


def crop_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, crop_bbox):
    """
    Return a crop of the input view.
    """
    image = ImageList(image)
    l, t, r, b = crop_bbox

    image = image.crop((l, t, r, b))
    depthmap = depthmap[t:b, l:r]
    pred_depth = pred_depth[t:b, l:r, :]
    camera_intrinsics = camera_intrinsics.copy()
    camera_intrinsics[0, 2] -= l
    camera_intrinsics[1, 2] -= t

    return image.to_pil(), depthmap, pred_depth, camera_intrinsics


def bbox_from_intrinsics_in_out(input_camera_matrix, output_camera_matrix, output_resolution):
    out_width, out_height = output_resolution
    l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2]))
    crop_bbox = (l, t, l + out_width, t + out_height)
    return crop_bbox

def center_crop_image_depthmap(image, depthmap, pred_depth, camera_intrinsics, crop_scale):
    """
    Jointly center-crop an image and its depthmap, and adjust the camera intrinsics accordingly.

    Parameters:
    - image: PIL.Image or similar, the input image.
    - depthmap: np.ndarray, the corresponding depth map.
    - camera_intrinsics: np.ndarray, the 3x3 camera intrinsics matrix.
    - crop_scale: float between 0 and 1, the fraction of the image to keep.

    Returns:
    - cropped_image: PIL.Image, the center-cropped image.
    - cropped_depthmap: np.ndarray, the center-cropped depth map.
    - adjusted_intrinsics: np.ndarray, the adjusted camera intrinsics matrix.
    """
    # Ensure crop_scale is valid
    assert 0 < crop_scale <= 1, "crop_scale must be between 0 and 1"

    # Convert image to ImageList for consistent processing
    image = ImageList(image)
    input_resolution = np.array(image.size)  # (width, height)
    if depthmap is not None:
        # Ensure depthmap matches the image size
        assert depthmap.shape[:2] == tuple(image.size[::-1]), "Depthmap size must match image size"
    if pred_depth is not None:
        # Ensure pred_depth matches the image size
        assert pred_depth.shape[:2] == tuple(image.size[::-1]), "pred_depth size must match image size"
    # Compute output resolution after cropping
    output_resolution = np.floor(input_resolution * crop_scale).astype(int)
    # get the correct crop_scale
    crop_scale = output_resolution / input_resolution

    # Compute margins (amount to crop from each side)
    margins = input_resolution - output_resolution
    offset = margins / 2  # Since we are center cropping

    # Calculate the crop bounding box
    l, t = offset.astype(int)
    r = l + output_resolution[0]
    b = t + output_resolution[1]
    crop_bbox = (l, t, r, b)

    # Crop the image and depthmap
    image = image.crop(crop_bbox)
    if depthmap is not None:
        depthmap = depthmap[t:b, l:r]
    if pred_depth is not None:
        pred_depth = pred_depth[t:b, l:r, :]
    # Adjust the camera intrinsics
    adjusted_intrinsics = camera_intrinsics.copy()

    # Adjust focal lengths (fx, fy)                         # no need to adjust focal lengths for cropping
    # adjusted_intrinsics[0, 0] /= crop_scale[0]  # fx
    # adjusted_intrinsics[1, 1] /= crop_scale[1]  # fy

    # Adjust principal point (cx, cy)
    adjusted_intrinsics[0, 2] -= l  # cx
    adjusted_intrinsics[1, 2] -= t  # cy

    return image.to_pil(), depthmap, pred_depth, adjusted_intrinsics