File size: 4,400 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions about images (loading/converting...)
# --------------------------------------------------------
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2  # noqa

try:
    from pillow_heif import register_heif_opener  # noqa
    register_heif_opener()
    heif_support_enabled = True
except ImportError:
    heif_support_enabled = False

ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])


def img_to_arr( img ):
    if isinstance(img, str):
        img = imread_cv2(img)
    return img

def imread_cv2(path, options=cv2.IMREAD_COLOR):
    """ Open an image or a depthmap with opencv-python.
    """
    if path.endswith(('.exr', 'EXR')):
        options = cv2.IMREAD_ANYDEPTH
    img = cv2.imread(path, options)
    if img is None:
        raise IOError(f'Could not load image={path} with {options=}')
    if img.ndim == 3:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def rgb(ftensor, true_shape=None):
    if isinstance(ftensor, list):
        return [rgb(x, true_shape=true_shape) for x in ftensor]
    if isinstance(ftensor, torch.Tensor):
        ftensor = ftensor.detach().cpu().numpy()  # H,W,3
    if ftensor.ndim == 3 and ftensor.shape[0] == 3:
        ftensor = ftensor.transpose(1, 2, 0)
    elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
        ftensor = ftensor.transpose(0, 2, 3, 1)
    if true_shape is not None:
        H, W = true_shape
        ftensor = ftensor[:H, :W]
    if ftensor.dtype == np.uint8:
        img = np.float32(ftensor) / 255
    else:
        img = (ftensor * 0.5) + 0.5
    return img.clip(min=0, max=1)


def _resize_pil_image(img, long_edge_size):
    S = max(img.size)
    if S > long_edge_size:
        interp = PIL.Image.LANCZOS
    elif S <= long_edge_size:
        interp = PIL.Image.BICUBIC
    new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
    return img.resize(new_size, interp)


def load_images(folder_or_list, size, square_ok=False, verbose=True):
    """ open and convert all images in a list or folder to proper input format for DUSt3R
    """
    if isinstance(folder_or_list, str):
        if verbose:
            print(f'>> Loading images from {folder_or_list}')
        root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    elif isinstance(folder_or_list, list):
        if verbose:
            print(f'>> Loading a list of {len(folder_or_list)} images')
        root, folder_content = '', folder_or_list

    else:
        raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    supported_images_extensions = ['.jpg', '.jpeg', '.png']
    if heif_support_enabled:
        supported_images_extensions += ['.heic', '.heif']
    supported_images_extensions = tuple(supported_images_extensions)

    imgs = []
    for path in folder_content:
        if not path.lower().endswith(supported_images_extensions):
            continue
        img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
        W1, H1 = img.size
        if size == 224:
            # resize short side to 224 (then crop)
            img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
        else:
            # resize long side to 512
            img = _resize_pil_image(img, size)
        W, H = img.size
        cx, cy = W//2, H//2
        if size == 224:
            half = min(cx, cy)
            img = img.crop((cx-half, cy-half, cx+half, cy+half))
        else:
            halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
            if not (square_ok) and W == H:
                halfh = 3*halfw/4
            img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))

        W2, H2 = img.size
        if verbose:
            print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
        imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
            [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))

    assert imgs, 'no images foud at '+root
    if verbose:
        print(f' (Found {len(imgs)} images)')
    return imgs