File size: 15,445 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# SAM 2: Segment Anything in Images and Videos
**[AI at Meta, FAIR](https://ai.meta.com/research/)**
[Nikhila Ravi](https://nikhilaravi.com/), [Valentin Gabeur](https://gabeur.github.io/), [Yuan-Ting Hu](https://scholar.google.com/citations?user=E8DVVYQAAAAJ&hl=en), [Ronghang Hu](https://ronghanghu.com/), [Chaitanya Ryali](https://scholar.google.com/citations?user=4LWx24UAAAAJ&hl=en), [Tengyu Ma](https://scholar.google.com/citations?user=VeTSl0wAAAAJ&hl=en), [Haitham Khedr](https://hkhedr.com/), [Roman Rädle](https://scholar.google.de/citations?user=Tpt57v0AAAAJ&hl=en), [Chloe Rolland](https://scholar.google.com/citations?hl=fr&user=n-SnMhoAAAAJ), [Laura Gustafson](https://scholar.google.com/citations?user=c8IpF9gAAAAJ&hl=en), [Eric Mintun](https://ericmintun.github.io/), [Junting Pan](https://junting.github.io/), [Kalyan Vasudev Alwala](https://scholar.google.co.in/citations?user=m34oaWEAAAAJ&hl=en), [Nicolas Carion](https://www.nicolascarion.com/), [Chao-Yuan Wu](https://chaoyuan.org/), [Ross Girshick](https://www.rossgirshick.info/), [Piotr Dollár](https://pdollar.github.io/), [Christoph Feichtenhofer](https://feichtenhofer.github.io/)
[[`Paper`](https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/)] [[`Project`](https://ai.meta.com/sam2)] [[`Demo`](https://sam2.metademolab.com/)] [[`Dataset`](https://ai.meta.com/datasets/segment-anything-video)] [[`Blog`](https://ai.meta.com/blog/segment-anything-2)] [[`BibTeX`](#citing-sam-2)]
![SAM 2 architecture](assets/model_diagram.png?raw=true)
**Segment Anything Model 2 (SAM 2)** is a foundation model towards solving promptable visual segmentation in images and videos. We extend SAM to video by considering images as a video with a single frame. The model design is a simple transformer architecture with streaming memory for real-time video processing. We build a model-in-the-loop data engine, which improves model and data via user interaction, to collect [**our SA-V dataset**](https://ai.meta.com/datasets/segment-anything-video), the largest video segmentation dataset to date. SAM 2 trained on our data provides strong performance across a wide range of tasks and visual domains.
![SA-V dataset](assets/sa_v_dataset.jpg?raw=true)
## Latest updates
**09/30/2024 -- SAM 2.1 Developer Suite (new checkpoints, training code, web demo) is released**
- A new suite of improved model checkpoints (denoted as **SAM 2.1**) are released. See [Model Description](#model-description) for details.
* To use the new SAM 2.1 checkpoints, you need the latest model code from this repo. If you have installed an earlier version of this repo, please first uninstall the previous version via `pip uninstall SAM-2`, pull the latest code from this repo (with `git pull`), and then reinstall the repo following [Installation](#installation) below.
- The training (and fine-tuning) code has been released. See [`training/README.md`](training/README.md) on how to get started.
- The frontend + backend code for the SAM 2 web demo has been released. See [`demo/README.md`](demo/README.md) for details.
## Installation
SAM 2 needs to be installed first before use. The code requires `python>=3.10`, as well as `torch>=2.3.1` and `torchvision>=0.18.1`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. You can install SAM 2 on a GPU machine using:
```bash
git clone https://github.com/facebookresearch/sam2.git && cd sam2
pip install -e .
```
If you are installing on Windows, it's strongly recommended to use [Windows Subsystem for Linux (WSL)](https://learn.microsoft.com/en-us/windows/wsl/install) with Ubuntu.
To use the SAM 2 predictor and run the example notebooks, `jupyter` and `matplotlib` are required and can be installed by:
```bash
pip install -e ".[notebooks]"
```
Note:
1. It's recommended to create a new Python environment via [Anaconda](https://www.anaconda.com/) for this installation and install PyTorch 2.3.1 (or higher) via `pip` following https://pytorch.org/. If you have a PyTorch version lower than 2.3.1 in your current environment, the installation command above will try to upgrade it to the latest PyTorch version using `pip`.
2. The step above requires compiling a custom CUDA kernel with the `nvcc` compiler. If it isn't already available on your machine, please install the [CUDA toolkits](https://developer.nvidia.com/cuda-toolkit-archive) with a version that matches your PyTorch CUDA version.
3. If you see a message like `Failed to build the SAM 2 CUDA extension` during installation, you can ignore it and still use SAM 2 (some post-processing functionality may be limited, but it doesn't affect the results in most cases).
Please see [`INSTALL.md`](./INSTALL.md) for FAQs on potential issues and solutions.
## Getting Started
### Download Checkpoints
First, we need to download a model checkpoint. All the model checkpoints can be downloaded by running:
```bash
cd checkpoints && \
./download_ckpts.sh && \
cd ..
```
or individually from:
- [sam2.1_hiera_tiny.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt)
- [sam2.1_hiera_small.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt)
- [sam2.1_hiera_base_plus.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt)
- [sam2.1_hiera_large.pt](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt)
(note that these are the improved checkpoints denoted as SAM 2.1; see [Model Description](#model-description) for details.)
Then SAM 2 can be used in a few lines as follows for image and video prediction.
### Image prediction
SAM 2 has all the capabilities of [SAM](https://github.com/facebookresearch/segment-anything) on static images, and we provide image prediction APIs that closely resemble SAM for image use cases. The `SAM2ImagePredictor` class has an easy interface for image prompting.
```python
import torch
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint))
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)
```
Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/image_predictor_example.ipynb)) for static image use cases.
SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/automatic_mask_generator_example.ipynb)) for automatic mask generation in images.
### Video prediction
For promptable segmentation and tracking in videos, we provide a video predictor with APIs for example to add prompts and propagate masklets throughout a video. SAM 2 supports video inference on multiple objects and uses an inference state to keep track of the interactions in each video.
```python
import torch
from sam2.build_sam import build_sam2_video_predictor
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, checkpoint)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
```
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) (also in Colab [here](https://colab.research.google.com/github/facebookresearch/sam2/blob/main/notebooks/video_predictor_example.ipynb)) for details on how to add click or box prompts, make refinements, and track multiple objects in videos.
## Load from 🤗 Hugging Face
Alternatively, models can also be loaded from [Hugging Face](https://huggingface.co/models?search=facebook/sam2) (requires `pip install huggingface_hub`).
For image prediction:
```python
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)
```
For video prediction:
```python
import torch
from sam2.sam2_video_predictor import SAM2VideoPredictor
predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
```
## Model Description
### SAM 2.1 checkpoints
The table below shows the improved SAM 2.1 checkpoints released on September 29, 2024.
| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
| :------------------: | :----------: | :--------------------: | :-----------------: | :----------------: | :---------------: |
| sam2.1_hiera_tiny <br /> ([config](sam2/configs/sam2.1/sam2.1_hiera_t.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt)) | 38.9 | 47.2 | 76.5 | 71.8 | 77.3 |
| sam2.1_hiera_small <br /> ([config](sam2/configs/sam2.1/sam2.1_hiera_s.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt)) | 46 | 43.3 (53.0 compiled\*) | 76.6 | 73.5 | 78.3 |
| sam2.1_hiera_base_plus <br /> ([config](sam2/configs/sam2.1/sam2.1_hiera_b+.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt)) | 80.8 | 34.8 (43.8 compiled\*) | 78.2 | 73.7 | 78.2 |
| sam2.1_hiera_large <br /> ([config](sam2/configs/sam2.1/sam2.1_hiera_l.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt)) | 224.4 | 24.2 (30.2 compiled\*) | 79.5 | 74.6 | 80.6 |
### SAM 2 checkpoints
The previous SAM 2 checkpoints released on July 29, 2024 can be found as follows:
| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
| :------------------: | :----------: | :--------------------: | :-----------------: | :----------------: | :---------------: |
| sam2_hiera_tiny <br /> ([config](sam2/configs/sam2/sam2_hiera_t.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt)) | 38.9 | 47.2 | 75.0 | 70.9 | 75.3 |
| sam2_hiera_small <br /> ([config](sam2/configs/sam2/sam2_hiera_s.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt)) | 46 | 43.3 (53.0 compiled\*) | 74.9 | 71.5 | 76.4 |
| sam2_hiera_base_plus <br /> ([config](sam2/configs/sam2/sam2_hiera_b+.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt)) | 80.8 | 34.8 (43.8 compiled\*) | 74.7 | 72.8 | 75.8 |
| sam2_hiera_large <br /> ([config](sam2/configs/sam2/sam2_hiera_l.yaml), [checkpoint](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt)) | 224.4 | 24.2 (30.2 compiled\*) | 76.0 | 74.6 | 79.8 |
\* Compile the model by setting `compile_image_encoder: True` in the config.
## Segment Anything Video Dataset
See [sav_dataset/README.md](sav_dataset/README.md) for details.
## Training SAM 2
You can train or fine-tune SAM 2 on custom datasets of images, videos, or both. Please check the training [README](training/README.md) on how to get started.
## Web demo for SAM 2
We have released the frontend + backend code for the SAM 2 web demo (a locally deployable version similar to https://sam2.metademolab.com/demo). Please see the web demo [README](demo/README.md) for details.
## License
The SAM 2 model checkpoints, SAM 2 demo code (front-end and back-end), and SAM 2 training code are licensed under [Apache 2.0](./LICENSE), however the [Inter Font](https://github.com/rsms/inter?tab=OFL-1.1-1-ov-file) and [Noto Color Emoji](https://github.com/googlefonts/noto-emoji) used in the SAM 2 demo code are made available under the [SIL Open Font License, version 1.1](https://openfontlicense.org/open-font-license-official-text/).
## Contributing
See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
## Contributors
The SAM 2 project was made possible with the help of many contributors (alphabetical):
Karen Bergan, Daniel Bolya, Alex Bosenberg, Kai Brown, Vispi Cassod, Christopher Chedeau, Ida Cheng, Luc Dahlin, Shoubhik Debnath, Rene Martinez Doehner, Grant Gardner, Sahir Gomez, Rishi Godugu, Baishan Guo, Caleb Ho, Andrew Huang, Somya Jain, Bob Kamma, Amanda Kallet, Jake Kinney, Alexander Kirillov, Shiva Koduvayur, Devansh Kukreja, Robert Kuo, Aohan Lin, Parth Malani, Jitendra Malik, Mallika Malhotra, Miguel Martin, Alexander Miller, Sasha Mitts, William Ngan, George Orlin, Joelle Pineau, Kate Saenko, Rodrick Shepard, Azita Shokrpour, David Soofian, Jonathan Torres, Jenny Truong, Sagar Vaze, Meng Wang, Claudette Ward, Pengchuan Zhang.
Third-party code: we use a GPU-based connected component algorithm adapted from [`cc_torch`](https://github.com/zsef123/Connected_components_PyTorch) (with its license in [`LICENSE_cctorch`](./LICENSE_cctorch)) as an optional post-processing step for the mask predictions.
## Citing SAM 2
If you use SAM 2 or the SA-V dataset in your research, please use the following BibTeX entry.
```bibtex
@article{ravi2024sam2,
title={SAM 2: Segment Anything in Images and Videos},
author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph},
journal={arXiv preprint arXiv:2408.00714},
url={https://arxiv.org/abs/2408.00714},
year={2024}
}
```
|