File size: 22,134 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
from collections import defaultdict
import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# the PNG palette for DAVIS 2017 dataset
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"
def load_ann_png(path):
"""Load a PNG file as a mask and its palette."""
mask = Image.open(path)
palette = mask.getpalette()
mask = np.array(mask).astype(np.uint8)
return mask, palette
def save_ann_png(path, mask, palette):
"""Save a mask as a PNG file with the given palette."""
assert mask.dtype == np.uint8
assert mask.ndim == 2
output_mask = Image.fromarray(mask)
output_mask.putpalette(palette)
output_mask.save(path)
def get_per_obj_mask(mask):
"""Split a mask into per-object masks."""
object_ids = np.unique(mask)
object_ids = object_ids[object_ids > 0].tolist()
per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
return per_obj_mask
def put_per_obj_mask(per_obj_mask, height, width):
"""Combine per-object masks into a single mask."""
mask = np.zeros((height, width), dtype=np.uint8)
object_ids = sorted(per_obj_mask)[::-1]
for object_id in object_ids:
object_mask = per_obj_mask[object_id]
object_mask = object_mask.reshape(height, width)
mask[object_mask] = object_id
return mask
def load_masks_from_dir(
input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False
):
"""Load masks from a directory as a dict of per-object masks."""
if not per_obj_png_file:
input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
if allow_missing and not os.path.exists(input_mask_path):
return {}, None
input_mask, input_palette = load_ann_png(input_mask_path)
per_obj_input_mask = get_per_obj_mask(input_mask)
else:
per_obj_input_mask = {}
input_palette = None
# each object is a directory in "{object_id:%03d}" format
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
object_id = int(object_name)
input_mask_path = os.path.join(
input_mask_dir, video_name, object_name, f"{frame_name}.png"
)
if allow_missing and not os.path.exists(input_mask_path):
continue
input_mask, input_palette = load_ann_png(input_mask_path)
per_obj_input_mask[object_id] = input_mask > 0
return per_obj_input_mask, input_palette
def save_masks_to_dir(
output_mask_dir,
video_name,
frame_name,
per_obj_output_mask,
height,
width,
per_obj_png_file,
output_palette,
):
"""Save masks to a directory as PNG files."""
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
if not per_obj_png_file:
output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
output_mask_path = os.path.join(
output_mask_dir, video_name, f"{frame_name}.png"
)
save_ann_png(output_mask_path, output_mask, output_palette)
else:
for object_id, object_mask in per_obj_output_mask.items():
object_name = f"{object_id:03d}"
os.makedirs(
os.path.join(output_mask_dir, video_name, object_name),
exist_ok=True,
)
output_mask = object_mask.reshape(height, width).astype(np.uint8)
output_mask_path = os.path.join(
output_mask_dir, video_name, object_name, f"{frame_name}.png"
)
save_ann_png(output_mask_path, output_mask, output_palette)
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_inference(
predictor,
base_video_dir,
input_mask_dir,
output_mask_dir,
video_name,
score_thresh=0.0,
use_all_masks=False,
per_obj_png_file=False,
):
"""Run VOS inference on a single video with the given predictor."""
# load the video frames and initialize the inference state on this video
video_dir = os.path.join(base_video_dir, video_name)
frame_names = [
os.path.splitext(p)[0]
for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
inference_state = predictor.init_state(
video_path=video_dir, async_loading_frames=False
)
height = inference_state["video_height"]
width = inference_state["video_width"]
input_palette = None
# fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
if not use_all_masks:
# use only the first video's ground-truth mask as the input mask
input_frame_inds = [0]
else:
# use all mask files available in the input_mask_dir as the input masks
if not per_obj_png_file:
input_frame_inds = [
idx
for idx, name in enumerate(frame_names)
if os.path.exists(
os.path.join(input_mask_dir, video_name, f"{name}.png")
)
]
else:
input_frame_inds = [
idx
for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
for idx, name in enumerate(frame_names)
if os.path.exists(
os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
)
]
# check and make sure we got at least one input frame
if len(input_frame_inds) == 0:
raise RuntimeError(
f"In {video_name=}, got no input masks in {input_mask_dir=}. "
"Please make sure the input masks are available in the correct format."
)
input_frame_inds = sorted(set(input_frame_inds))
# add those input masks to SAM 2 inference state before propagation
object_ids_set = None
for input_frame_idx in input_frame_inds:
try:
per_obj_input_mask, input_palette = load_masks_from_dir(
input_mask_dir=input_mask_dir,
video_name=video_name,
frame_name=frame_names[input_frame_idx],
per_obj_png_file=per_obj_png_file,
)
except FileNotFoundError as e:
raise RuntimeError(
f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. "
"Please add the `--track_object_appearing_later_in_video` flag "
"for VOS datasets that don't have all objects to track appearing "
"in the first frame (such as LVOS or YouTube-VOS)."
) from e
# get the list of object ids to track from the first input frame
if object_ids_set is None:
object_ids_set = set(per_obj_input_mask)
for object_id, object_mask in per_obj_input_mask.items():
# check and make sure no new object ids appear only in later frames
if object_id not in object_ids_set:
raise RuntimeError(
f"In {video_name=}, got a new {object_id=} appearing only in a "
f"later {input_frame_idx=} (but not appearing in the first frame). "
"Please add the `--track_object_appearing_later_in_video` flag "
"for VOS datasets that don't have all objects to track appearing "
"in the first frame (such as LVOS or YouTube-VOS)."
)
predictor.add_new_mask(
inference_state=inference_state,
frame_idx=input_frame_idx,
obj_id=object_id,
mask=object_mask,
)
# check and make sure we have at least one object to track
if object_ids_set is None or len(object_ids_set) == 0:
raise RuntimeError(
f"In {video_name=}, got no object ids on {input_frame_inds=}. "
"Please add the `--track_object_appearing_later_in_video` flag "
"for VOS datasets that don't have all objects to track appearing "
"in the first frame (such as LVOS or YouTube-VOS)."
)
# run propagation throughout the video and collect the results in a dict
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
output_palette = input_palette or DAVIS_PALETTE
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
inference_state
):
per_obj_output_mask = {
out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
video_segments[out_frame_idx] = per_obj_output_mask
# write the output masks as palette PNG files to output_mask_dir
for out_frame_idx, per_obj_output_mask in video_segments.items():
save_masks_to_dir(
output_mask_dir=output_mask_dir,
video_name=video_name,
frame_name=frame_names[out_frame_idx],
per_obj_output_mask=per_obj_output_mask,
height=height,
width=width,
per_obj_png_file=per_obj_png_file,
output_palette=output_palette,
)
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_separate_inference_per_object(
predictor,
base_video_dir,
input_mask_dir,
output_mask_dir,
video_name,
score_thresh=0.0,
use_all_masks=False,
per_obj_png_file=False,
):
"""
Run VOS inference on a single video with the given predictor.
Unlike `vos_inference`, this function run inference separately for each object
in a video, which could be applied to datasets like LVOS or YouTube-VOS that
don't have all objects to track appearing in the first frame (i.e. some objects
might appear only later in the video).
"""
# load the video frames and initialize the inference state on this video
video_dir = os.path.join(base_video_dir, video_name)
frame_names = [
os.path.splitext(p)[0]
for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
inference_state = predictor.init_state(
video_path=video_dir, async_loading_frames=False
)
height = inference_state["video_height"]
width = inference_state["video_width"]
input_palette = None
# collect all the object ids and their input masks
inputs_per_object = defaultdict(dict)
for idx, name in enumerate(frame_names):
if per_obj_png_file or os.path.exists(
os.path.join(input_mask_dir, video_name, f"{name}.png")
):
per_obj_input_mask, input_palette = load_masks_from_dir(
input_mask_dir=input_mask_dir,
video_name=video_name,
frame_name=frame_names[idx],
per_obj_png_file=per_obj_png_file,
allow_missing=True,
)
for object_id, object_mask in per_obj_input_mask.items():
# skip empty masks
if not np.any(object_mask):
continue
# if `use_all_masks=False`, we only use the first mask for each object
if len(inputs_per_object[object_id]) > 0 and not use_all_masks:
continue
print(f"adding mask from frame {idx} as input for {object_id=}")
inputs_per_object[object_id][idx] = object_mask
# run inference separately for each object in the video
object_ids = sorted(inputs_per_object)
output_scores_per_object = defaultdict(dict)
for object_id in object_ids:
# add those input masks to SAM 2 inference state before propagation
input_frame_inds = sorted(inputs_per_object[object_id])
predictor.reset_state(inference_state)
for input_frame_idx in input_frame_inds:
predictor.add_new_mask(
inference_state=inference_state,
frame_idx=input_frame_idx,
obj_id=object_id,
mask=inputs_per_object[object_id][input_frame_idx],
)
# run propagation throughout the video and collect the results in a dict
for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video(
inference_state,
start_frame_idx=min(input_frame_inds),
reverse=False,
):
obj_scores = out_mask_logits.cpu().numpy()
output_scores_per_object[object_id][out_frame_idx] = obj_scores
# post-processing: consolidate the per-object scores into per-frame masks
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
output_palette = input_palette or DAVIS_PALETTE
video_segments = {} # video_segments contains the per-frame segmentation results
for frame_idx in range(len(frame_names)):
scores = torch.full(
size=(len(object_ids), 1, height, width),
fill_value=-1024.0,
dtype=torch.float32,
)
for i, object_id in enumerate(object_ids):
if frame_idx in output_scores_per_object[object_id]:
scores[i] = torch.from_numpy(
output_scores_per_object[object_id][frame_idx]
)
if not per_obj_png_file:
scores = predictor._apply_non_overlapping_constraints(scores)
per_obj_output_mask = {
object_id: (scores[i] > score_thresh).cpu().numpy()
for i, object_id in enumerate(object_ids)
}
video_segments[frame_idx] = per_obj_output_mask
# write the output masks as palette PNG files to output_mask_dir
for frame_idx, per_obj_output_mask in video_segments.items():
save_masks_to_dir(
output_mask_dir=output_mask_dir,
video_name=video_name,
frame_name=frame_names[frame_idx],
per_obj_output_mask=per_obj_output_mask,
height=height,
width=width,
per_obj_png_file=per_obj_png_file,
output_palette=output_palette,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sam2_cfg",
type=str,
default="configs/sam2.1/sam2.1_hiera_b+.yaml",
help="SAM 2 model configuration file",
)
parser.add_argument(
"--sam2_checkpoint",
type=str,
default="./checkpoints/sam2.1_hiera_b+.pt",
help="path to the SAM 2 model checkpoint",
)
parser.add_argument(
"--base_video_dir",
type=str,
required=True,
help="directory containing videos (as JPEG files) to run VOS prediction on",
)
parser.add_argument(
"--input_mask_dir",
type=str,
required=True,
help="directory containing input masks (as PNG files) of each video",
)
parser.add_argument(
"--video_list_file",
type=str,
default=None,
help="text file containing the list of video names to run VOS prediction on",
)
parser.add_argument(
"--output_mask_dir",
type=str,
required=True,
help="directory to save the output masks (as PNG files)",
)
parser.add_argument(
"--score_thresh",
type=float,
default=0.0,
help="threshold for the output mask logits (default: 0.0)",
)
parser.add_argument(
"--use_all_masks",
action="store_true",
help="whether to use all available PNG files in input_mask_dir "
"(default without this flag: just the first PNG file as input to the SAM 2 model; "
"usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
)
parser.add_argument(
"--per_obj_png_file",
action="store_true",
help="whether use separate per-object PNG files for input and output masks "
"(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
"note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
)
parser.add_argument(
"--apply_postprocessing",
action="store_true",
help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
"(we don't apply such post-processing in the SAM 2 model evaluation)",
)
parser.add_argument(
"--track_object_appearing_later_in_video",
action="store_true",
help="whether to track objects that appear later in the video (i.e. not on the first frame; "
"some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)",
)
args = parser.parse_args()
# if we use per-object PNG files, they could possibly overlap in inputs and outputs
hydra_overrides_extra = [
"++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
]
predictor = build_sam2_video_predictor(
config_file=args.sam2_cfg,
ckpt_path=args.sam2_checkpoint,
apply_postprocessing=args.apply_postprocessing,
hydra_overrides_extra=hydra_overrides_extra,
)
if args.use_all_masks:
print("using all available masks in input_mask_dir as input to the SAM 2 model")
else:
print(
"using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
)
# if a video list file is provided, read the video names from the file
# (otherwise, we use all subdirectories in base_video_dir)
if args.video_list_file is not None:
with open(args.video_list_file, "r") as f:
video_names = [v.strip() for v in f.readlines()]
else:
video_names = [
p
for p in os.listdir(args.base_video_dir)
if os.path.isdir(os.path.join(args.base_video_dir, p))
]
print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")
for n_video, video_name in enumerate(video_names):
print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
if not args.track_object_appearing_later_in_video:
vos_inference(
predictor=predictor,
base_video_dir=args.base_video_dir,
input_mask_dir=args.input_mask_dir,
output_mask_dir=args.output_mask_dir,
video_name=video_name,
score_thresh=args.score_thresh,
use_all_masks=args.use_all_masks,
per_obj_png_file=args.per_obj_png_file,
)
else:
vos_separate_inference_per_object(
predictor=predictor,
base_video_dir=args.base_video_dir,
input_mask_dir=args.input_mask_dir,
output_mask_dir=args.output_mask_dir,
video_name=video_name,
score_thresh=args.score_thresh,
use_all_masks=args.use_all_masks,
per_obj_png_file=args.per_obj_png_file,
)
print(
f"completed VOS prediction on {len(video_names)} videos -- "
f"output masks saved to {args.output_mask_dir}"
)
if __name__ == "__main__":
main()
|