File size: 18,539 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Transforms and data augmentation for both image + bbox.
"""
import logging
import random
from typing import Iterable
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
import torchvision.transforms.v2.functional as Fv2
from PIL import Image as PILImage
from torchvision.transforms import InterpolationMode
from training.utils.data_utils import VideoDatapoint
def hflip(datapoint, index):
datapoint.frames[index].data = F.hflip(datapoint.frames[index].data)
for obj in datapoint.frames[index].objects:
if obj.segment is not None:
obj.segment = F.hflip(obj.segment)
return datapoint
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = max_size * min_original_size / max_original_size
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = int(round(size))
oh = int(round(size * h / w))
else:
oh = int(round(size))
ow = int(round(size * w / h))
return (oh, ow)
def resize(datapoint, index, size, max_size=None, square=False, v2=False):
# size can be min_size (scalar) or (w, h) tuple
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
if square:
size = size, size
else:
cur_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
size = get_size(cur_size, size, max_size)
old_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
if v2:
datapoint.frames[index].data = Fv2.resize(
datapoint.frames[index].data, size, antialias=True
)
else:
datapoint.frames[index].data = F.resize(datapoint.frames[index].data, size)
new_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
for obj in datapoint.frames[index].objects:
if obj.segment is not None:
obj.segment = F.resize(obj.segment[None, None], size).squeeze()
h, w = size
datapoint.frames[index].size = (h, w)
return datapoint
def pad(datapoint, index, padding, v2=False):
old_h, old_w = datapoint.frames[index].size
h, w = old_h, old_w
if len(padding) == 2:
# assumes that we only pad on the bottom right corners
datapoint.frames[index].data = F.pad(
datapoint.frames[index].data, (0, 0, padding[0], padding[1])
)
h += padding[1]
w += padding[0]
else:
# left, top, right, bottom
datapoint.frames[index].data = F.pad(
datapoint.frames[index].data,
(padding[0], padding[1], padding[2], padding[3]),
)
h += padding[1] + padding[3]
w += padding[0] + padding[2]
datapoint.frames[index].size = (h, w)
for obj in datapoint.frames[index].objects:
if obj.segment is not None:
if v2:
if len(padding) == 2:
obj.segment = Fv2.pad(obj.segment, (0, 0, padding[0], padding[1]))
else:
obj.segment = Fv2.pad(obj.segment, tuple(padding))
else:
if len(padding) == 2:
obj.segment = F.pad(obj.segment, (0, 0, padding[0], padding[1]))
else:
obj.segment = F.pad(obj.segment, tuple(padding))
return datapoint
class RandomHorizontalFlip:
def __init__(self, consistent_transform, p=0.5):
self.p = p
self.consistent_transform = consistent_transform
def __call__(self, datapoint, **kwargs):
if self.consistent_transform:
if random.random() < self.p:
for i in range(len(datapoint.frames)):
datapoint = hflip(datapoint, i)
return datapoint
for i in range(len(datapoint.frames)):
if random.random() < self.p:
datapoint = hflip(datapoint, i)
return datapoint
class RandomResizeAPI:
def __init__(
self, sizes, consistent_transform, max_size=None, square=False, v2=False
):
if isinstance(sizes, int):
sizes = (sizes,)
assert isinstance(sizes, Iterable)
self.sizes = list(sizes)
self.max_size = max_size
self.square = square
self.consistent_transform = consistent_transform
self.v2 = v2
def __call__(self, datapoint, **kwargs):
if self.consistent_transform:
size = random.choice(self.sizes)
for i in range(len(datapoint.frames)):
datapoint = resize(
datapoint, i, size, self.max_size, square=self.square, v2=self.v2
)
return datapoint
for i in range(len(datapoint.frames)):
size = random.choice(self.sizes)
datapoint = resize(
datapoint, i, size, self.max_size, square=self.square, v2=self.v2
)
return datapoint
class ToTensorAPI:
def __init__(self, v2=False):
self.v2 = v2
def __call__(self, datapoint: VideoDatapoint, **kwargs):
for img in datapoint.frames:
if self.v2:
img.data = Fv2.to_image_tensor(img.data)
else:
img.data = F.to_tensor(img.data)
return datapoint
class NormalizeAPI:
def __init__(self, mean, std, v2=False):
self.mean = mean
self.std = std
self.v2 = v2
def __call__(self, datapoint: VideoDatapoint, **kwargs):
for img in datapoint.frames:
if self.v2:
img.data = Fv2.convert_image_dtype(img.data, torch.float32)
img.data = Fv2.normalize(img.data, mean=self.mean, std=self.std)
else:
img.data = F.normalize(img.data, mean=self.mean, std=self.std)
return datapoint
class ComposeAPI:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, datapoint, **kwargs):
for t in self.transforms:
datapoint = t(datapoint, **kwargs)
return datapoint
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class RandomGrayscale:
def __init__(self, consistent_transform, p=0.5):
self.p = p
self.consistent_transform = consistent_transform
self.Grayscale = T.Grayscale(num_output_channels=3)
def __call__(self, datapoint: VideoDatapoint, **kwargs):
if self.consistent_transform:
if random.random() < self.p:
for img in datapoint.frames:
img.data = self.Grayscale(img.data)
return datapoint
for img in datapoint.frames:
if random.random() < self.p:
img.data = self.Grayscale(img.data)
return datapoint
class ColorJitter:
def __init__(self, consistent_transform, brightness, contrast, saturation, hue):
self.consistent_transform = consistent_transform
self.brightness = (
brightness
if isinstance(brightness, list)
else [max(0, 1 - brightness), 1 + brightness]
)
self.contrast = (
contrast
if isinstance(contrast, list)
else [max(0, 1 - contrast), 1 + contrast]
)
self.saturation = (
saturation
if isinstance(saturation, list)
else [max(0, 1 - saturation), 1 + saturation]
)
self.hue = hue if isinstance(hue, list) or hue is None else ([-hue, hue])
def __call__(self, datapoint: VideoDatapoint, **kwargs):
if self.consistent_transform:
# Create a color jitter transformation params
(
fn_idx,
brightness_factor,
contrast_factor,
saturation_factor,
hue_factor,
) = T.ColorJitter.get_params(
self.brightness, self.contrast, self.saturation, self.hue
)
for img in datapoint.frames:
if not self.consistent_transform:
(
fn_idx,
brightness_factor,
contrast_factor,
saturation_factor,
hue_factor,
) = T.ColorJitter.get_params(
self.brightness, self.contrast, self.saturation, self.hue
)
for fn_id in fn_idx:
if fn_id == 0 and brightness_factor is not None:
img.data = F.adjust_brightness(img.data, brightness_factor)
elif fn_id == 1 and contrast_factor is not None:
img.data = F.adjust_contrast(img.data, contrast_factor)
elif fn_id == 2 and saturation_factor is not None:
img.data = F.adjust_saturation(img.data, saturation_factor)
elif fn_id == 3 and hue_factor is not None:
img.data = F.adjust_hue(img.data, hue_factor)
return datapoint
class RandomAffine:
def __init__(
self,
degrees,
consistent_transform,
scale=None,
translate=None,
shear=None,
image_mean=(123, 116, 103),
log_warning=True,
num_tentatives=1,
image_interpolation="bicubic",
):
"""
The mask is required for this transform.
if consistent_transform if True, then the same random affine is applied to all frames and masks.
"""
self.degrees = degrees if isinstance(degrees, list) else ([-degrees, degrees])
self.scale = scale
self.shear = (
shear if isinstance(shear, list) else ([-shear, shear] if shear else None)
)
self.translate = translate
self.fill_img = image_mean
self.consistent_transform = consistent_transform
self.log_warning = log_warning
self.num_tentatives = num_tentatives
if image_interpolation == "bicubic":
self.image_interpolation = InterpolationMode.BICUBIC
elif image_interpolation == "bilinear":
self.image_interpolation = InterpolationMode.BILINEAR
else:
raise NotImplementedError
def __call__(self, datapoint: VideoDatapoint, **kwargs):
for _tentative in range(self.num_tentatives):
res = self.transform_datapoint(datapoint)
if res is not None:
return res
if self.log_warning:
logging.warning(
f"Skip RandomAffine for zero-area mask in first frame after {self.num_tentatives} tentatives"
)
return datapoint
def transform_datapoint(self, datapoint: VideoDatapoint):
_, height, width = F.get_dimensions(datapoint.frames[0].data)
img_size = [width, height]
if self.consistent_transform:
# Create a random affine transformation
affine_params = T.RandomAffine.get_params(
degrees=self.degrees,
translate=self.translate,
scale_ranges=self.scale,
shears=self.shear,
img_size=img_size,
)
for img_idx, img in enumerate(datapoint.frames):
this_masks = [
obj.segment.unsqueeze(0) if obj.segment is not None else None
for obj in img.objects
]
if not self.consistent_transform:
# if not consistent we create a new affine params for every frame&mask pair Create a random affine transformation
affine_params = T.RandomAffine.get_params(
degrees=self.degrees,
translate=self.translate,
scale_ranges=self.scale,
shears=self.shear,
img_size=img_size,
)
transformed_bboxes, transformed_masks = [], []
for i in range(len(img.objects)):
if this_masks[i] is None:
transformed_masks.append(None)
# Dummy bbox for a dummy target
transformed_bboxes.append(torch.tensor([[0, 0, 1, 1]]))
else:
transformed_mask = F.affine(
this_masks[i],
*affine_params,
interpolation=InterpolationMode.NEAREST,
fill=0.0,
)
if img_idx == 0 and transformed_mask.max() == 0:
# We are dealing with a video and the object is not visible in the first frame
# Return the datapoint without transformation
return None
transformed_masks.append(transformed_mask.squeeze())
for i in range(len(img.objects)):
img.objects[i].segment = transformed_masks[i]
img.data = F.affine(
img.data,
*affine_params,
interpolation=self.image_interpolation,
fill=self.fill_img,
)
return datapoint
def random_mosaic_frame(
datapoint,
index,
grid_h,
grid_w,
target_grid_y,
target_grid_x,
should_hflip,
):
# Step 1: downsize the images and paste them into a mosaic
image_data = datapoint.frames[index].data
is_pil = isinstance(image_data, PILImage.Image)
if is_pil:
H_im = image_data.height
W_im = image_data.width
image_data_output = PILImage.new("RGB", (W_im, H_im))
else:
H_im = image_data.size(-2)
W_im = image_data.size(-1)
image_data_output = torch.zeros_like(image_data)
downsize_cache = {}
for grid_y in range(grid_h):
for grid_x in range(grid_w):
y_offset_b = grid_y * H_im // grid_h
x_offset_b = grid_x * W_im // grid_w
y_offset_e = (grid_y + 1) * H_im // grid_h
x_offset_e = (grid_x + 1) * W_im // grid_w
H_im_downsize = y_offset_e - y_offset_b
W_im_downsize = x_offset_e - x_offset_b
if (H_im_downsize, W_im_downsize) in downsize_cache:
image_data_downsize = downsize_cache[(H_im_downsize, W_im_downsize)]
else:
image_data_downsize = F.resize(
image_data,
size=(H_im_downsize, W_im_downsize),
interpolation=InterpolationMode.BILINEAR,
antialias=True, # antialiasing for downsizing
)
downsize_cache[(H_im_downsize, W_im_downsize)] = image_data_downsize
if should_hflip[grid_y, grid_x].item():
image_data_downsize = F.hflip(image_data_downsize)
if is_pil:
image_data_output.paste(image_data_downsize, (x_offset_b, y_offset_b))
else:
image_data_output[:, y_offset_b:y_offset_e, x_offset_b:x_offset_e] = (
image_data_downsize
)
datapoint.frames[index].data = image_data_output
# Step 2: downsize the masks and paste them into the target grid of the mosaic
for obj in datapoint.frames[index].objects:
if obj.segment is None:
continue
assert obj.segment.shape == (H_im, W_im) and obj.segment.dtype == torch.uint8
segment_output = torch.zeros_like(obj.segment)
target_y_offset_b = target_grid_y * H_im // grid_h
target_x_offset_b = target_grid_x * W_im // grid_w
target_y_offset_e = (target_grid_y + 1) * H_im // grid_h
target_x_offset_e = (target_grid_x + 1) * W_im // grid_w
target_H_im_downsize = target_y_offset_e - target_y_offset_b
target_W_im_downsize = target_x_offset_e - target_x_offset_b
segment_downsize = F.resize(
obj.segment[None, None],
size=(target_H_im_downsize, target_W_im_downsize),
interpolation=InterpolationMode.BILINEAR,
antialias=True, # antialiasing for downsizing
)[0, 0]
if should_hflip[target_grid_y, target_grid_x].item():
segment_downsize = F.hflip(segment_downsize[None, None])[0, 0]
segment_output[
target_y_offset_b:target_y_offset_e, target_x_offset_b:target_x_offset_e
] = segment_downsize
obj.segment = segment_output
return datapoint
class RandomMosaicVideoAPI:
def __init__(self, prob=0.15, grid_h=2, grid_w=2, use_random_hflip=False):
self.prob = prob
self.grid_h = grid_h
self.grid_w = grid_w
self.use_random_hflip = use_random_hflip
def __call__(self, datapoint, **kwargs):
if random.random() > self.prob:
return datapoint
# select a random location to place the target mask in the mosaic
target_grid_y = random.randint(0, self.grid_h - 1)
target_grid_x = random.randint(0, self.grid_w - 1)
# whether to flip each grid in the mosaic horizontally
if self.use_random_hflip:
should_hflip = torch.rand(self.grid_h, self.grid_w) < 0.5
else:
should_hflip = torch.zeros(self.grid_h, self.grid_w, dtype=torch.bool)
for i in range(len(datapoint.frames)):
datapoint = random_mosaic_frame(
datapoint,
i,
grid_h=self.grid_h,
grid_w=self.grid_w,
target_grid_y=target_grid_y,
target_grid_x=target_grid_x,
should_hflip=should_hflip,
)
return datapoint
|