File size: 22,134 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os
from collections import defaultdict

import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor


# the PNG palette for DAVIS 2017 dataset
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0  \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00  \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80  @\xa0 @ \xa0@\xa0\xa0@  \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"


def load_ann_png(path):
    """Load a PNG file as a mask and its palette."""
    mask = Image.open(path)
    palette = mask.getpalette()
    mask = np.array(mask).astype(np.uint8)
    return mask, palette


def save_ann_png(path, mask, palette):
    """Save a mask as a PNG file with the given palette."""
    assert mask.dtype == np.uint8
    assert mask.ndim == 2
    output_mask = Image.fromarray(mask)
    output_mask.putpalette(palette)
    output_mask.save(path)


def get_per_obj_mask(mask):
    """Split a mask into per-object masks."""
    object_ids = np.unique(mask)
    object_ids = object_ids[object_ids > 0].tolist()
    per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
    return per_obj_mask


def put_per_obj_mask(per_obj_mask, height, width):
    """Combine per-object masks into a single mask."""
    mask = np.zeros((height, width), dtype=np.uint8)
    object_ids = sorted(per_obj_mask)[::-1]
    for object_id in object_ids:
        object_mask = per_obj_mask[object_id]
        object_mask = object_mask.reshape(height, width)
        mask[object_mask] = object_id
    return mask


def load_masks_from_dir(
    input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False
):
    """Load masks from a directory as a dict of per-object masks."""
    if not per_obj_png_file:
        input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
        if allow_missing and not os.path.exists(input_mask_path):
            return {}, None
        input_mask, input_palette = load_ann_png(input_mask_path)
        per_obj_input_mask = get_per_obj_mask(input_mask)
    else:
        per_obj_input_mask = {}
        input_palette = None
        # each object is a directory in "{object_id:%03d}" format
        for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
            object_id = int(object_name)
            input_mask_path = os.path.join(
                input_mask_dir, video_name, object_name, f"{frame_name}.png"
            )
            if allow_missing and not os.path.exists(input_mask_path):
                continue
            input_mask, input_palette = load_ann_png(input_mask_path)
            per_obj_input_mask[object_id] = input_mask > 0

    return per_obj_input_mask, input_palette


def save_masks_to_dir(
    output_mask_dir,
    video_name,
    frame_name,
    per_obj_output_mask,
    height,
    width,
    per_obj_png_file,
    output_palette,
):
    """Save masks to a directory as PNG files."""
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    if not per_obj_png_file:
        output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
        output_mask_path = os.path.join(
            output_mask_dir, video_name, f"{frame_name}.png"
        )
        save_ann_png(output_mask_path, output_mask, output_palette)
    else:
        for object_id, object_mask in per_obj_output_mask.items():
            object_name = f"{object_id:03d}"
            os.makedirs(
                os.path.join(output_mask_dir, video_name, object_name),
                exist_ok=True,
            )
            output_mask = object_mask.reshape(height, width).astype(np.uint8)
            output_mask_path = os.path.join(
                output_mask_dir, video_name, object_name, f"{frame_name}.png"
            )
            save_ann_png(output_mask_path, output_mask, output_palette)


@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_inference(
    predictor,
    base_video_dir,
    input_mask_dir,
    output_mask_dir,
    video_name,
    score_thresh=0.0,
    use_all_masks=False,
    per_obj_png_file=False,
):
    """Run VOS inference on a single video with the given predictor."""
    # load the video frames and initialize the inference state on this video
    video_dir = os.path.join(base_video_dir, video_name)
    frame_names = [
        os.path.splitext(p)[0]
        for p in os.listdir(video_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    inference_state = predictor.init_state(
        video_path=video_dir, async_loading_frames=False
    )
    height = inference_state["video_height"]
    width = inference_state["video_width"]
    input_palette = None

    # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
    if not use_all_masks:
        # use only the first video's ground-truth mask as the input mask
        input_frame_inds = [0]
    else:
        # use all mask files available in the input_mask_dir as the input masks
        if not per_obj_png_file:
            input_frame_inds = [
                idx
                for idx, name in enumerate(frame_names)
                if os.path.exists(
                    os.path.join(input_mask_dir, video_name, f"{name}.png")
                )
            ]
        else:
            input_frame_inds = [
                idx
                for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
                for idx, name in enumerate(frame_names)
                if os.path.exists(
                    os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
                )
            ]
        # check and make sure we got at least one input frame
        if len(input_frame_inds) == 0:
            raise RuntimeError(
                f"In {video_name=}, got no input masks in {input_mask_dir=}. "
                "Please make sure the input masks are available in the correct format."
            )
        input_frame_inds = sorted(set(input_frame_inds))

    # add those input masks to SAM 2 inference state before propagation
    object_ids_set = None
    for input_frame_idx in input_frame_inds:
        try:
            per_obj_input_mask, input_palette = load_masks_from_dir(
                input_mask_dir=input_mask_dir,
                video_name=video_name,
                frame_name=frame_names[input_frame_idx],
                per_obj_png_file=per_obj_png_file,
            )
        except FileNotFoundError as e:
            raise RuntimeError(
                f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. "
                "Please add the `--track_object_appearing_later_in_video` flag "
                "for VOS datasets that don't have all objects to track appearing "
                "in the first frame (such as LVOS or YouTube-VOS)."
            ) from e
        # get the list of object ids to track from the first input frame
        if object_ids_set is None:
            object_ids_set = set(per_obj_input_mask)
        for object_id, object_mask in per_obj_input_mask.items():
            # check and make sure no new object ids appear only in later frames
            if object_id not in object_ids_set:
                raise RuntimeError(
                    f"In {video_name=}, got a new {object_id=} appearing only in a "
                    f"later {input_frame_idx=} (but not appearing in the first frame). "
                    "Please add the `--track_object_appearing_later_in_video` flag "
                    "for VOS datasets that don't have all objects to track appearing "
                    "in the first frame (such as LVOS or YouTube-VOS)."
                )
            predictor.add_new_mask(
                inference_state=inference_state,
                frame_idx=input_frame_idx,
                obj_id=object_id,
                mask=object_mask,
            )

    # check and make sure we have at least one object to track
    if object_ids_set is None or len(object_ids_set) == 0:
        raise RuntimeError(
            f"In {video_name=}, got no object ids on {input_frame_inds=}. "
            "Please add the `--track_object_appearing_later_in_video` flag "
            "for VOS datasets that don't have all objects to track appearing "
            "in the first frame (such as LVOS or YouTube-VOS)."
        )
    # run propagation throughout the video and collect the results in a dict
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    output_palette = input_palette or DAVIS_PALETTE
    video_segments = {}  # video_segments contains the per-frame segmentation results
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
        inference_state
    ):
        per_obj_output_mask = {
            out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
        video_segments[out_frame_idx] = per_obj_output_mask

    # write the output masks as palette PNG files to output_mask_dir
    for out_frame_idx, per_obj_output_mask in video_segments.items():
        save_masks_to_dir(
            output_mask_dir=output_mask_dir,
            video_name=video_name,
            frame_name=frame_names[out_frame_idx],
            per_obj_output_mask=per_obj_output_mask,
            height=height,
            width=width,
            per_obj_png_file=per_obj_png_file,
            output_palette=output_palette,
        )


@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_separate_inference_per_object(
    predictor,
    base_video_dir,
    input_mask_dir,
    output_mask_dir,
    video_name,
    score_thresh=0.0,
    use_all_masks=False,
    per_obj_png_file=False,
):
    """
    Run VOS inference on a single video with the given predictor.

    Unlike `vos_inference`, this function run inference separately for each object
    in a video, which could be applied to datasets like LVOS or YouTube-VOS that
    don't have all objects to track appearing in the first frame (i.e. some objects
    might appear only later in the video).
    """
    # load the video frames and initialize the inference state on this video
    video_dir = os.path.join(base_video_dir, video_name)
    frame_names = [
        os.path.splitext(p)[0]
        for p in os.listdir(video_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    inference_state = predictor.init_state(
        video_path=video_dir, async_loading_frames=False
    )
    height = inference_state["video_height"]
    width = inference_state["video_width"]
    input_palette = None

    # collect all the object ids and their input masks
    inputs_per_object = defaultdict(dict)
    for idx, name in enumerate(frame_names):
        if per_obj_png_file or os.path.exists(
            os.path.join(input_mask_dir, video_name, f"{name}.png")
        ):
            per_obj_input_mask, input_palette = load_masks_from_dir(
                input_mask_dir=input_mask_dir,
                video_name=video_name,
                frame_name=frame_names[idx],
                per_obj_png_file=per_obj_png_file,
                allow_missing=True,
            )
            for object_id, object_mask in per_obj_input_mask.items():
                # skip empty masks
                if not np.any(object_mask):
                    continue
                # if `use_all_masks=False`, we only use the first mask for each object
                if len(inputs_per_object[object_id]) > 0 and not use_all_masks:
                    continue
                print(f"adding mask from frame {idx} as input for {object_id=}")
                inputs_per_object[object_id][idx] = object_mask

    # run inference separately for each object in the video
    object_ids = sorted(inputs_per_object)
    output_scores_per_object = defaultdict(dict)
    for object_id in object_ids:
        # add those input masks to SAM 2 inference state before propagation
        input_frame_inds = sorted(inputs_per_object[object_id])
        predictor.reset_state(inference_state)
        for input_frame_idx in input_frame_inds:
            predictor.add_new_mask(
                inference_state=inference_state,
                frame_idx=input_frame_idx,
                obj_id=object_id,
                mask=inputs_per_object[object_id][input_frame_idx],
            )

        # run propagation throughout the video and collect the results in a dict
        for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video(
            inference_state,
            start_frame_idx=min(input_frame_inds),
            reverse=False,
        ):
            obj_scores = out_mask_logits.cpu().numpy()
            output_scores_per_object[object_id][out_frame_idx] = obj_scores

    # post-processing: consolidate the per-object scores into per-frame masks
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    output_palette = input_palette or DAVIS_PALETTE
    video_segments = {}  # video_segments contains the per-frame segmentation results
    for frame_idx in range(len(frame_names)):
        scores = torch.full(
            size=(len(object_ids), 1, height, width),
            fill_value=-1024.0,
            dtype=torch.float32,
        )
        for i, object_id in enumerate(object_ids):
            if frame_idx in output_scores_per_object[object_id]:
                scores[i] = torch.from_numpy(
                    output_scores_per_object[object_id][frame_idx]
                )

        if not per_obj_png_file:
            scores = predictor._apply_non_overlapping_constraints(scores)
        per_obj_output_mask = {
            object_id: (scores[i] > score_thresh).cpu().numpy()
            for i, object_id in enumerate(object_ids)
        }
        video_segments[frame_idx] = per_obj_output_mask

    # write the output masks as palette PNG files to output_mask_dir
    for frame_idx, per_obj_output_mask in video_segments.items():
        save_masks_to_dir(
            output_mask_dir=output_mask_dir,
            video_name=video_name,
            frame_name=frame_names[frame_idx],
            per_obj_output_mask=per_obj_output_mask,
            height=height,
            width=width,
            per_obj_png_file=per_obj_png_file,
            output_palette=output_palette,
        )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--sam2_cfg",
        type=str,
        default="configs/sam2.1/sam2.1_hiera_b+.yaml",
        help="SAM 2 model configuration file",
    )
    parser.add_argument(
        "--sam2_checkpoint",
        type=str,
        default="./checkpoints/sam2.1_hiera_b+.pt",
        help="path to the SAM 2 model checkpoint",
    )
    parser.add_argument(
        "--base_video_dir",
        type=str,
        required=True,
        help="directory containing videos (as JPEG files) to run VOS prediction on",
    )
    parser.add_argument(
        "--input_mask_dir",
        type=str,
        required=True,
        help="directory containing input masks (as PNG files) of each video",
    )
    parser.add_argument(
        "--video_list_file",
        type=str,
        default=None,
        help="text file containing the list of video names to run VOS prediction on",
    )
    parser.add_argument(
        "--output_mask_dir",
        type=str,
        required=True,
        help="directory to save the output masks (as PNG files)",
    )
    parser.add_argument(
        "--score_thresh",
        type=float,
        default=0.0,
        help="threshold for the output mask logits (default: 0.0)",
    )
    parser.add_argument(
        "--use_all_masks",
        action="store_true",
        help="whether to use all available PNG files in input_mask_dir "
        "(default without this flag: just the first PNG file as input to the SAM 2 model; "
        "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
    )
    parser.add_argument(
        "--per_obj_png_file",
        action="store_true",
        help="whether use separate per-object PNG files for input and output masks "
        "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
        "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
    )
    parser.add_argument(
        "--apply_postprocessing",
        action="store_true",
        help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
        "(we don't apply such post-processing in the SAM 2 model evaluation)",
    )
    parser.add_argument(
        "--track_object_appearing_later_in_video",
        action="store_true",
        help="whether to track objects that appear later in the video (i.e. not on the first frame; "
        "some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)",
    )
    args = parser.parse_args()

    # if we use per-object PNG files, they could possibly overlap in inputs and outputs
    hydra_overrides_extra = [
        "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
    ]
    predictor = build_sam2_video_predictor(
        config_file=args.sam2_cfg,
        ckpt_path=args.sam2_checkpoint,
        apply_postprocessing=args.apply_postprocessing,
        hydra_overrides_extra=hydra_overrides_extra,
    )

    if args.use_all_masks:
        print("using all available masks in input_mask_dir as input to the SAM 2 model")
    else:
        print(
            "using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
        )
    # if a video list file is provided, read the video names from the file
    # (otherwise, we use all subdirectories in base_video_dir)
    if args.video_list_file is not None:
        with open(args.video_list_file, "r") as f:
            video_names = [v.strip() for v in f.readlines()]
    else:
        video_names = [
            p
            for p in os.listdir(args.base_video_dir)
            if os.path.isdir(os.path.join(args.base_video_dir, p))
        ]
    print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")

    for n_video, video_name in enumerate(video_names):
        print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
        if not args.track_object_appearing_later_in_video:
            vos_inference(
                predictor=predictor,
                base_video_dir=args.base_video_dir,
                input_mask_dir=args.input_mask_dir,
                output_mask_dir=args.output_mask_dir,
                video_name=video_name,
                score_thresh=args.score_thresh,
                use_all_masks=args.use_all_masks,
                per_obj_png_file=args.per_obj_png_file,
            )
        else:
            vos_separate_inference_per_object(
                predictor=predictor,
                base_video_dir=args.base_video_dir,
                input_mask_dir=args.input_mask_dir,
                output_mask_dir=args.output_mask_dir,
                video_name=video_name,
                score_thresh=args.score_thresh,
                use_all_masks=args.use_all_masks,
                per_obj_png_file=args.per_obj_png_file,
            )

    print(
        f"completed VOS prediction on {len(video_names)} videos -- "
        f"output masks saved to {args.output_mask_dir}"
    )


if __name__ == "__main__":
    main()