File size: 11,596 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Losses, metrics per batch, metrics per dataset
# --------------------------------------------------------
import torch
from torch import nn
import torch.nn.functional as F
def _get_gtnorm(gt):
if gt.size(1)==1: # stereo
return gt
# flow
return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW
############ losses without confidence
class L1Loss(nn.Module):
def __init__(self, max_gtnorm=None):
super().__init__()
self.max_gtnorm = max_gtnorm
self.with_conf = False
def _error(self, gt, predictions):
return torch.abs(gt-predictions)
def forward(self, predictions, gt, inspect=False):
mask = torch.isfinite(gt)
if self.max_gtnorm is not None:
mask *= _get_gtnorm(gt).expand(-1,gt.size(1),-1,-1)<self.max_gtnorm
if inspect:
return self._error(gt, predictions)
return self._error(gt[mask],predictions[mask]).mean()
############## losses with confience
## there are several parametrizations
class LaplacianLoss(nn.Module): # used for CroCo-Stereo on ETH3D, d'=exp(d)
def __init__(self, max_gtnorm=None):
super().__init__()
self.max_gtnorm = max_gtnorm
self.with_conf = True
def forward(self, predictions, gt, conf):
mask = torch.isfinite(gt)
mask = mask[:,0,:,:]
if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm
conf = conf.squeeze(1)
return ( torch.abs(gt-predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + conf[mask] ).mean()# + torch.log(2) => which is a constant
class LaplacianLossBounded(nn.Module): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b
def __init__(self, max_gtnorm=10000., a=0.25, b=4.):
super().__init__()
self.max_gtnorm = max_gtnorm
self.with_conf = True
self.a, self.b = a, b
def forward(self, predictions, gt, conf):
mask = torch.isfinite(gt)
mask = mask[:,0,:,:]
if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm
conf = conf.squeeze(1)
conf = (self.b - self.a) * torch.sigmoid(conf) + self.a
return ( torch.abs(gt-predictions).sum(dim=1)[mask] / conf[mask] + torch.log(conf)[mask] ).mean()# + torch.log(2) => which is a constant
class LaplacianLossBounded2(nn.Module): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b
def __init__(self, max_gtnorm=None, a=3.0, b=3.0):
super().__init__()
self.max_gtnorm = max_gtnorm
self.with_conf = True
self.a, self.b = a, b
def forward(self, predictions, gt, conf):
mask = torch.isfinite(gt)
mask = mask[:,0,:,:]
if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm
conf = conf.squeeze(1)
conf = 2 * self.a * (torch.sigmoid(conf / self.b) - 0.5 )
return ( torch.abs(gt-predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + conf[mask] ).mean()# + torch.log(2) => which is a constant
############## metrics per batch
class StereoMetrics(nn.Module):
def __init__(self, do_quantile=False):
super().__init__()
self.bad_ths = [0.5,1,2,3]
self.do_quantile = do_quantile
def forward(self, predictions, gt):
B = predictions.size(0)
metrics = {}
gtcopy = gt.clone()
mask = torch.isfinite(gtcopy)
gtcopy[~mask] = 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0
Npx = mask.view(B,-1).sum(dim=1)
L1error = (torch.abs(gtcopy-predictions)*mask).view(B,-1)
L2error = (torch.square(gtcopy-predictions)*mask).view(B,-1)
# avgerr
metrics['avgerr'] = torch.mean(L1error.sum(dim=1)/Npx )
# rmse
metrics['rmse'] = torch.sqrt(L2error.sum(dim=1)/Npx).mean(dim=0)
# err > t for t in [0.5,1,2,3]
for ths in self.bad_ths:
metrics['bad@{:.1f}'.format(ths)] = (((L1error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100
return metrics
class FlowMetrics(nn.Module):
def __init__(self):
super().__init__()
self.bad_ths = [1,3,5]
def forward(self, predictions, gt):
B = predictions.size(0)
metrics = {}
mask = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite
Npx = mask.view(B,-1).sum(dim=1)
gtcopy = gt.clone() # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored
gtcopy[:,0,:,:][~mask] = 999999.0
gtcopy[:,1,:,:][~mask] = 999999.0
L1error = (torch.abs(gtcopy-predictions).sum(dim=1)*mask).view(B,-1)
L2error = (torch.sqrt(torch.sum(torch.square(gtcopy-predictions),dim=1))*mask).view(B,-1)
metrics['L1err'] = torch.mean(L1error.sum(dim=1)/Npx )
metrics['EPE'] = torch.mean(L2error.sum(dim=1)/Npx )
for ths in self.bad_ths:
metrics['bad@{:.1f}'.format(ths)] = (((L2error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100
return metrics
############## metrics per dataset
## we update the average and maintain the number of pixels while adding data batch per batch
## at the beggining, call reset()
## after each batch, call add_batch(...)
## at the end: call get_results()
class StereoDatasetMetrics(nn.Module):
def __init__(self):
super().__init__()
self.bad_ths = [0.5,1,2,3]
def reset(self):
self.agg_N = 0 # number of pixels so far
self.agg_L1err = torch.tensor(0.0) # L1 error so far
self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels
self._metrics = None
def add_batch(self, predictions, gt):
assert predictions.size(1)==1, predictions.size()
assert gt.size(1)==1, gt.size()
if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ...
L1err = torch.minimum( torch.minimum( torch.minimum(
torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1),
torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)),
torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)),
torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1))
valid = torch.isfinite(L1err)
else:
valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite
L1err = torch.sum(torch.abs(gt-predictions),dim=1)
N = valid.sum()
Nnew = self.agg_N + N
self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew
self.agg_N = Nnew
for i,th in enumerate(self.bad_ths):
self.agg_Nbad[i] += (L1err[valid]>th).sum().cpu()
def _compute_metrics(self):
if self._metrics is not None: return
out = {}
out['L1err'] = self.agg_L1err.item()
for i,th in enumerate(self.bad_ths):
out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0
self._metrics = out
def get_results(self):
self._compute_metrics() # to avoid recompute them multiple times
return self._metrics
class FlowDatasetMetrics(nn.Module):
def __init__(self):
super().__init__()
self.bad_ths = [0.5,1,3,5]
self.speed_ths = [(0,10),(10,40),(40,torch.inf)]
def reset(self):
self.agg_N = 0 # number of pixels so far
self.agg_L1err = torch.tensor(0.0) # L1 error so far
self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far
self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels
self.agg_EPEspeed = [torch.tensor(0.0) for _ in self.speed_ths] # EPE per speed bin so far
self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far
self._metrics = None
self.pairname_results = {}
def add_batch(self, predictions, gt):
assert predictions.size(1)==2, predictions.size()
assert gt.size(1)==2, gt.size()
if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ...
L1err = torch.minimum( torch.minimum( torch.minimum(
torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1),
torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)),
torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)),
torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1))
L2err = torch.minimum( torch.minimum( torch.minimum(
torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]-predictions),dim=1)),
torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]-predictions),dim=1))),
torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]-predictions),dim=1))),
torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]-predictions),dim=1)))
valid = torch.isfinite(L1err)
gtspeed = (torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]),dim=1)) +\
torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]),dim=1)) ) / 4.0 # let's just average them
else:
valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite
L1err = torch.sum(torch.abs(gt-predictions),dim=1)
L2err = torch.sqrt(torch.sum(torch.square(gt-predictions),dim=1))
gtspeed = torch.sqrt(torch.sum(torch.square(gt),dim=1))
N = valid.sum()
Nnew = self.agg_N + N
self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew
self.agg_L2err = float(self.agg_N)/Nnew * self.agg_L2err + L2err[valid].mean().cpu() * float(N)/Nnew
self.agg_N = Nnew
for i,th in enumerate(self.bad_ths):
self.agg_Nbad[i] += (L2err[valid]>th).sum().cpu()
for i,(th1,th2) in enumerate(self.speed_ths):
vv = (gtspeed[valid]>=th1) * (gtspeed[valid]<th2)
iNspeed = vv.sum()
if iNspeed==0: continue
iNnew = self.agg_Nspeed[i] + iNspeed
self.agg_EPEspeed[i] = float(self.agg_Nspeed[i]) / iNnew * self.agg_EPEspeed[i] + float(iNspeed) / iNnew * L2err[valid][vv].mean().cpu()
self.agg_Nspeed[i] = iNnew
def _compute_metrics(self):
if self._metrics is not None: return
out = {}
out['L1err'] = self.agg_L1err.item()
out['EPE'] = self.agg_L2err.item()
for i,th in enumerate(self.bad_ths):
out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0
for i,(th1,th2) in enumerate(self.speed_ths):
out['s{:d}{:s}'.format(th1, '-'+str(th2) if th2<torch.inf else '+')] = self.agg_EPEspeed[i].item()
self._metrics = out
def get_results(self):
self._compute_metrics() # to avoid recompute them multiple times
return self._metrics |