File size: 32,379 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Dataset structure for stereo
# --------------------------------------------------------
import sys, os
import os.path as osp
import pickle
import numpy as np
from PIL import Image
import json
import h5py
from glob import glob
import cv2
import torch
from torch.utils import data
from .augmentor import StereoAugmentor
dataset_to_root = {
'CREStereo': './data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/',
'SceneFlow': './data/stereoflow//SceneFlow/',
'ETH3DLowRes': './data/stereoflow/eth3d_lowres/',
'Booster': './data/stereoflow/booster_gt/',
'Middlebury2021': './data/stereoflow/middlebury/2021/data/',
'Middlebury2014': './data/stereoflow/middlebury/2014/',
'Middlebury2006': './data/stereoflow/middlebury/2006/',
'Middlebury2005': './data/stereoflow/middlebury/2005/train/',
'MiddleburyEval3': './data/stereoflow/middlebury/MiddEval3/',
'Spring': './data/stereoflow/spring/',
'Kitti15': './data/stereoflow/kitti-stereo-2015/',
'Kitti12': './data/stereoflow/kitti-stereo-2012/',
}
cache_dir = "./data/stereoflow/datasets_stereo_cache/"
in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
in1k_std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
def img_to_tensor(img):
img = torch.from_numpy(img).permute(2, 0, 1).float() / 255.
img = (img-in1k_mean)/in1k_std
return img
def disp_to_tensor(disp):
return torch.from_numpy(disp)[None,:,:]
class StereoDataset(data.Dataset):
def __init__(self, split, augmentor=False, crop_size=None, totensor=True):
self.split = split
if not augmentor: assert crop_size is None
if crop_size: assert augmentor
self.crop_size = crop_size
self.augmentor_str = augmentor
self.augmentor = StereoAugmentor(crop_size) if augmentor else None
self.totensor = totensor
self.rmul = 1 # keep track of rmul
self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time)
self._prepare_data()
self._load_or_build_cache()
def prepare_data(self):
"""
to be defined for each dataset
"""
raise NotImplementedError
def __len__(self):
return len(self.pairnames)
def __getitem__(self, index):
pairname = self.pairnames[index]
# get filenames
Limgname = self.pairname_to_Limgname(pairname)
Rimgname = self.pairname_to_Rimgname(pairname)
Ldispname = self.pairname_to_Ldispname(pairname) if self.pairname_to_Ldispname is not None else None
# load images and disparities
Limg = _read_img(Limgname)
Rimg = _read_img(Rimgname)
disp = self.load_disparity(Ldispname) if Ldispname is not None else None
# sanity check
if disp is not None: assert np.all(disp>0) or self.name=="Spring", (self.name, pairname, Ldispname)
# apply augmentations
if self.augmentor is not None:
Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name)
if self.totensor:
Limg = img_to_tensor(Limg)
Rimg = img_to_tensor(Rimg)
if disp is None:
disp = torch.tensor([]) # to allow dataloader batching with default collate_gn
else:
disp = disp_to_tensor(disp)
return Limg, Rimg, disp, str(pairname)
def __rmul__(self, v):
self.rmul *= v
self.pairnames = v * self.pairnames
return self
def __str__(self):
return f'{self.__class__.__name__}_{self.split}'
def __repr__(self):
s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})'
if self.rmul==1:
s+=f'\n\tnum pairs: {len(self.pairnames)}'
else:
s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})'
return s
def _set_root(self):
self.root = dataset_to_root[self.name]
assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}"
def _load_or_build_cache(self):
cache_file = osp.join(cache_dir, self.name+'.pkl')
if osp.isfile(cache_file):
with open(cache_file, 'rb') as fid:
self.pairnames = pickle.load(fid)[self.split]
else:
tosave = self._build_cache()
os.makedirs(cache_dir, exist_ok=True)
with open(cache_file, 'wb') as fid:
pickle.dump(tosave, fid)
self.pairnames = tosave[self.split]
class CREStereoDataset(StereoDataset):
def _prepare_data(self):
self.name = 'CREStereo'
self._set_root()
assert self.split in ['train']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_left.jpg')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'_right.jpg')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname+'_left.disp.png')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_crestereo_disp
def _build_cache(self):
allpairs = [s+'/'+f[:-len('_left.jpg')] for s in sorted(os.listdir(self.root)) for f in sorted(os.listdir(self.root+'/'+s)) if f.endswith('_left.jpg')]
assert len(allpairs)==200000, "incorrect parsing of pairs in CreStereo"
tosave = {'train': allpairs}
return tosave
class SceneFlowDataset(StereoDataset):
def _prepare_data(self):
self.name = "SceneFlow"
self._set_root()
assert self.split in ['train_finalpass','train_cleanpass','train_allpass','test_finalpass','test_cleanpass','test_allpass','test1of100_cleanpass','test1of100_finalpass']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/left/','/right/')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname).replace('/frames_finalpass/','/disparity/').replace('/frames_cleanpass/','/disparity/')[:-4]+'.pfm'
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_sceneflow_disp
def _build_cache(self):
trainpairs = []
# driving
pairs = sorted(glob(self.root+'Driving/frames_finalpass/*/*/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
# monkaa
pairs = sorted(glob(self.root+'Monkaa/frames_finalpass/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
# flyingthings
pairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow"
testpairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TEST/*/*/left/*.png'))
testpairs = list(map(lambda x: x[len(self.root):], testpairs))
assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow"
test1of100pairs = testpairs[::100]
assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow"
# all
tosave = {'train_finalpass': trainpairs,
'train_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), trainpairs)),
'test_finalpass': testpairs,
'test_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), testpairs)),
'test1of100_finalpass': test1of100pairs,
'test1of100_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), test1of100pairs)),
}
tosave['train_allpass'] = tosave['train_finalpass']+tosave['train_cleanpass']
tosave['test_allpass'] = tosave['test_finalpass']+tosave['test_cleanpass']
return tosave
class Md21Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2021"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/im0','/im1'))
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp0.pfm')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury_disp
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
#trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings
trainpairs += [s+'/ambient/'+b+'/'+a for b in sorted(os.listdir(osp.join(self.root,s,'ambient'))) for a in sorted(os.listdir(osp.join(self.root,s,'ambient',b))) if a.startswith('im0')]
assert len(trainpairs)==355
subtrainpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[:-2])]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[-2:])]
assert len(subtrainpairs)==335 and len(subvalpairs)==20, "incorrect parsing of pairs in Middlebury 2021"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md14Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2014"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'disp0.pfm')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury_disp
self.has_constant_resolution = False
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
trainpairs += [s+'/im1.png',s+'/im1E.png',s+'/im1L.png']
assert len(trainpairs)==138
valseqs = ['Umbrella-imperfect','Vintage-perfect']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==132 and len(subvalpairs)==6, "incorrect parsing of pairs in Middlebury 2014"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md06Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2006"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
self.load_disparity = _read_middlebury20052006_disp
self.has_constant_resolution = False
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
for i in ['Illum1','Illum2','Illum3']:
for e in ['Exp0','Exp1','Exp2']:
trainpairs.append(osp.join(s,i,e,'view1.png'))
assert len(trainpairs)==189
valseqs = ['Rocks1','Wood2']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==171 and len(subvalpairs)==18, "incorrect parsing of pairs in Middlebury 2006"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md05Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2005"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury20052006_disp
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
for i in ['Illum1','Illum2','Illum3']:
for e in ['Exp0','Exp1','Exp2']:
trainpairs.append(osp.join(s,i,e,'view1.png'))
assert len(trainpairs)==54, "incorrect parsing of pairs in Middlebury 2005"
valseqs = ['Reindeer']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==45 and len(subvalpairs)==9, "incorrect parsing of pairs in Middlebury 2005"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class MdEval3Dataset(StereoDataset):
def _prepare_data(self):
self.name = "MiddleburyEval3"
self._set_root()
assert self.split in [s+'_'+r for s in ['train','subtrain','subval','test','all'] for r in ['full','half','quarter']]
if self.split.endswith('_full'):
self.root = self.root.replace('/MiddEval3','/MiddEval3_F')
elif self.split.endswith('_half'):
self.root = self.root.replace('/MiddEval3','/MiddEval3_H')
else:
assert self.split.endswith('_quarter')
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname, 'disp0GT.pfm')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_middlebury_disp
# for submission only
self.submission_methodname = "CroCo-Stereo"
self.submission_sresolution = 'F' if self.split.endswith('_full') else ('H' if self.split.endswith('_half') else 'Q')
def _build_cache(self):
trainpairs = ['train/'+s for s in sorted(os.listdir(self.root+'train/'))]
testpairs = ['test/'+s for s in sorted(os.listdir(self.root+'test/'))]
subvalpairs = trainpairs[-1:]
subtrainpairs = trainpairs[:-1]
allpairs = trainpairs+testpairs
assert len(trainpairs)==15 and len(testpairs)==15 and len(subvalpairs)==1 and len(subtrainpairs)==14 and len(allpairs)==30, "incorrect parsing of pairs in Middlebury Eval v3"
tosave = {}
for r in ['full','half','quarter']:
tosave.update(**{'train_'+r: trainpairs, 'subtrain_'+r: subtrainpairs, 'subval_'+r: subvalpairs, 'test_'+r: testpairs, 'all_'+r: allpairs})
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname.split('/')[0].replace('train','training')+self.submission_sresolution, pairname.split('/')[1], 'disp0'+self.submission_methodname+'.pfm')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writePFM(outfile, prediction)
timefile = os.path.join( os.path.dirname(outfile), "time"+self.submission_methodname+'.txt')
with open(timefile, 'w') as fid:
fid.write(str(time))
def finalize_submission(self, outdir):
cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/{self.submission_methodname}.zip')
class ETH3DLowResDataset(StereoDataset):
def _prepare_data(self):
self.name = "ETH3DLowRes"
self._set_root()
assert self.split in ['train','test','subtrain','subval','all']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: None if pairname.startswith('test/') else osp.join(self.root, pairname.replace('train/','train_gt/'), 'disp0GT.pfm')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_eth3d_disp
self.has_constant_resolution = False
def _build_cache(self):
trainpairs = ['train/' + s for s in sorted(os.listdir(self.root+'train/'))]
testpairs = ['test/' + s for s in sorted(os.listdir(self.root+'test/'))]
assert len(trainpairs) == 27 and len(testpairs) == 20, "incorrect parsing of pairs in ETH3D Low Res"
subvalpairs = ['train/delivery_area_3s','train/electro_3l','train/playground_3l']
assert all(p in trainpairs for p in subvalpairs)
subtrainpairs = [p for p in trainpairs if not p in subvalpairs]
assert len(subvalpairs)==3 and len(subtrainpairs)==24, "incorrect parsing of pairs in ETH3D Low Res"
tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs, 'all': trainpairs+testpairs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, 'low_res_two_view', pairname.split('/')[1]+'.pfm')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writePFM(outfile, prediction)
timefile = outfile[:-4]+'.txt'
with open(timefile, 'w') as fid:
fid.write('runtime '+str(time))
def finalize_submission(self, outdir):
cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip')
class BoosterDataset(StereoDataset):
def _prepare_data(self):
self.name = "Booster"
self._set_root()
assert self.split in ['train_balanced','test_balanced','subtrain_balanced','subval_balanced'] # we use only the balanced version
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/camera_00/','/camera_02/')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), '../disp_00.npy') # same images with different colors, same gt per sequence
self.pairname_to_str = lambda pairname: pairname[:-4].replace('/camera_00/','/')
self.load_disparity = _read_booster_disp
def _build_cache(self):
trainseqs = sorted(os.listdir(self.root+'train/balanced'))
trainpairs = ['train/balanced/'+s+'/camera_00/'+imname for s in trainseqs for imname in sorted(os.listdir(self.root+'train/balanced/'+s+'/camera_00/'))]
testpairs = ['test/balanced/'+s+'/camera_00/'+imname for s in sorted(os.listdir(self.root+'test/balanced')) for imname in sorted(os.listdir(self.root+'test/balanced/'+s+'/camera_00/'))]
assert len(trainpairs) == 228 and len(testpairs) == 191
subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])]
subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])]
# warning: if we do validation split, we should split scenes!!!
tosave = {'train_balanced': trainpairs, 'test_balanced': testpairs, 'subtrain_balanced': subtrainpairs, 'subval_balanced': subvalpairs,}
return tosave
class SpringDataset(StereoDataset):
def _prepare_data(self):
self.name = "Spring"
self._set_root()
assert self.split in ['train', 'test', 'subtrain', 'subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'.png').replace('frame_right','<frame_right>').replace('frame_left','frame_right').replace('<frame_right>','frame_left')
self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_hdf5_disp
def _build_cache(self):
trainseqs = sorted(os.listdir( osp.join(self.root,'train')))
trainpairs = [osp.join('train',s,'frame_left',f[:-4]) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,'frame_left')))]
testseqs = sorted(os.listdir( osp.join(self.root,'test')))
testpairs = [osp.join('test',s,'frame_left',f[:-4]) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,'frame_left')))]
testpairs += [p.replace('frame_left','frame_right') for p in testpairs]
"""maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041"""
subtrainpairs = [p for p in trainpairs if p.split('/')[1]!='0041']
subvalpairs = [p for p in trainpairs if p.split('/')[1]=='0041']
assert len(trainpairs)==5000 and len(testpairs)==2000 and len(subtrainpairs)==4904 and len(subvalpairs)==96, "incorrect parsing of pairs in Spring"
tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writeDsp5File(prediction, outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
exe = "{self.root}/disp1_subsampling"
if os.path.isfile(exe):
cmd = f'cd "{outdir}/test"; {exe} .'
print(cmd)
os.system(cmd)
else:
print('Could not find disp1_subsampling executable for submission.')
print('Please download it and run:')
print(f'cd "{outdir}/test"; <disp1_subsampling_exe> .')
class Kitti12Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Kitti12"
self._set_root()
assert self.split in ['train','test']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/colored_1/')+'_10.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/disp_occ/')+'_10.png')
self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/')
self.load_disparity = _read_kitti_disp
def _build_cache(self):
trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)]
testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)]
assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12"
tosave = {'train': trainseqs, 'test': testseqs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
img = (prediction * 256).astype('uint16')
Image.fromarray(img).save(outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/kitti12_results.zip')
class Kitti15Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Kitti15"
self._set_root()
assert self.split in ['train','subtrain','subval','test']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/image_3/')+'_10.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/disp_occ_0/')+'_10.png')
self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/')
self.load_disparity = _read_kitti_disp
def _build_cache(self):
trainseqs = ["training/image_2/%06d"%(i) for i in range(200)]
subtrainseqs = trainseqs[:-5]
subvalseqs = trainseqs[-5:]
testseqs = ["testing/image_2/%06d"%(i) for i in range(200)]
assert len(trainseqs)==200 and len(subtrainseqs)==195 and len(subvalseqs)==5 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15"
tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, 'disp_0', pairname.split('/')[-1]+'_10.png')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
img = (prediction * 256).astype('uint16')
Image.fromarray(img).save(outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/kitti15_results.zip')
### auxiliary functions
def _read_img(filename):
# convert to RGB for scene flow finalpass data
img = np.asarray(Image.open(filename).convert('RGB'))
return img
def _read_booster_disp(filename):
disp = np.load(filename)
disp[disp==0.0] = np.inf
return disp
def _read_png_disp(filename, coef=1.0):
disp = np.asarray(Image.open(filename))
disp = disp.astype(np.float32) / coef
disp[disp==0.0] = np.inf
return disp
def _read_pfm_disp(filename):
disp = np.ascontiguousarray(_read_pfm(filename)[0])
disp[disp<=0] = np.inf # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm
return disp
def _read_npy_disp(filename):
return np.load(filename)
def _read_crestereo_disp(filename): return _read_png_disp(filename, coef=32.0)
def _read_middlebury20052006_disp(filename): return _read_png_disp(filename, coef=1.0)
def _read_kitti_disp(filename): return _read_png_disp(filename, coef=256.0)
_read_sceneflow_disp = _read_pfm_disp
_read_eth3d_disp = _read_pfm_disp
_read_middlebury_disp = _read_pfm_disp
_read_carla_disp = _read_pfm_disp
_read_tartanair_disp = _read_npy_disp
def _read_hdf5_disp(filename):
disp = np.asarray(h5py.File(filename)['disparity'])
disp[np.isnan(disp)] = np.inf # make invalid values as +inf
#disp[disp==0.0] = np.inf # make invalid values as +inf
return disp.astype(np.float32)
import re
def _read_pfm(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def writePFM(file, image, scale=1):
file = open(file, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n'.encode())
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n'.encode() % scale)
image.tofile(file)
def writeDsp5File(disp, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
# disp visualization
def vis_disparity(disp, m=None, M=None):
if m is None: m = disp.min()
if M is None: M = disp.max()
disp_vis = (disp - m) / (M-m) * 255.0
disp_vis = disp_vis.astype("uint8")
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)
return disp_vis
# dataset getter
def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None):
dataset_str = dataset_str.replace('(','Dataset(')
if augmentor:
dataset_str = dataset_str.replace(')',', augmentor=True)')
if crop_size is not None:
dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size)))
return eval(dataset_str)
def get_test_datasets_stereo(dataset_str):
dataset_str = dataset_str.replace('(','Dataset(')
return [eval(s) for s in dataset_str.split('+')] |