File size: 23,074 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
from matplotlib.pyplot import grid
import torch
from torch import nn
from torch.nn import functional as F
import math
from scipy.spatial.transform import Rotation
def tum_to_pose_matrix(pose):
# pose: [tx, ty, tz, qw, qx, qy, qz]
assert pose.shape == (7,)
pose_xyzw = pose[[3, 4, 5, 6]]
r = Rotation.from_quat(pose_xyzw)
return np.vstack([np.hstack([r.as_matrix(), pose[:3].reshape(-1, 1)]), [0, 0, 0, 1]])
def depth_regularization_si_weighted(depth_pred, depth_init, pixel_wise_weight=None, pixel_wise_weight_scale=1, pixel_wise_weight_bias=1, eps=1e-6, pixel_weight_normalize=False):
# scale compute:
depth_pred = torch.clamp(depth_pred, min=eps)
depth_init = torch.clamp(depth_init, min=eps)
log_d_pred = torch.log(depth_pred)
log_d_init = torch.log(depth_init)
B, _, H, W = depth_pred.shape
scale = torch.sum(log_d_init - log_d_pred,
dim=[1, 2, 3], keepdim=True)/(H*W)
if pixel_wise_weight is not None:
if pixel_weight_normalize:
norm = torch.max(pixel_wise_weight.detach().view(
B, -1), dim=1, keepdim=False)[0]
pixel_wise_weight = pixel_wise_weight / \
(norm[:, None, None, None]+eps)
pixel_wise_weight = pixel_wise_weight * \
pixel_wise_weight_scale + pixel_wise_weight_bias
else:
pixel_wise_weight = 1
si_loss = torch.sum(pixel_wise_weight*(log_d_pred -
log_d_init + scale)**2, dim=[1, 2, 3])/(H*W)
return si_loss.mean()
class WarpImage(torch.nn.Module):
def __init__(self):
super(WarpImage, self).__init__()
self.base_coord = None
def init_grid(self, shape, device):
H, W = shape
hh, ww = torch.meshgrid(torch.arange(
H).float(), torch.arange(W).float())
coord = torch.zeros([1, H, W, 2])
coord[0, ..., 0] = ww
coord[0, ..., 1] = hh
self.base_coord = coord.to(device)
self.W = W
self.H = H
def warp_image(self, base_coord, img_1, flow_2_1):
B, C, H, W = flow_2_1.shape
sample_grids = base_coord + flow_2_1.permute([0, 2, 3, 1])
sample_grids[..., 0] /= (W - 1) / 2
sample_grids[..., 1] /= (H - 1) / 2
sample_grids -= 1
warped_image_2_from_1 = F.grid_sample(
img_1, sample_grids, align_corners=True)
return warped_image_2_from_1
def forward(self, img_1, flow_2_1):
B, _, H, W = flow_2_1.shape
if self.base_coord is None:
self.init_grid([H, W], device=flow_2_1.device)
base_coord = self.base_coord.expand([B, -1, -1, -1])
return self.warp_image(base_coord, img_1, flow_2_1)
class CameraIntrinsics(nn.Module):
def __init__(self, init_focal_length=0.45, pixel_size=None):
super().__init__()
self.focal_length = nn.Parameter(torch.tensor(init_focal_length))
self.pixel_size_buffer = pixel_size
def register_shape(self, orig_shape, opt_shape) -> None:
self.orig_shape = orig_shape
self.opt_shape = opt_shape
H_orig, W_orig = orig_shape
H_opt, W_opt = opt_shape
if self.pixel_size_buffer is None:
# initialize as 35mm film
pixel_size = 0.433 / (H_orig ** 2 + W_orig ** 2) ** 0.5
else:
pixel_size = self.pixel_size_buffer
self.register_buffer("pixel_size", torch.tensor(pixel_size))
intrinsics_mat_buffer = torch.zeros(3, 3)
intrinsics_mat_buffer[0, -1] = (W_opt - 1) / 2
intrinsics_mat_buffer[1, -1] = (H_opt - 1) / 2
intrinsics_mat_buffer[2, -1] = 1
self.register_buffer("intrinsics_mat", intrinsics_mat_buffer)
self.register_buffer("scale_H", torch.tensor(
H_opt / (H_orig * pixel_size)))
self.register_buffer("scale_W", torch.tensor(
W_opt / (W_orig * pixel_size)))
def get_K_and_inv(self, with_batch_dim=True) -> torch.Tensor:
intrinsics_mat = self.intrinsics_mat.clone()
intrinsics_mat[0, 0] = self.focal_length * self.scale_W
intrinsics_mat[1, 1] = self.focal_length * self.scale_H
inv_intrinsics_mat = torch.linalg.inv(intrinsics_mat)
if with_batch_dim:
return intrinsics_mat[None, ...], inv_intrinsics_mat[None, ...]
else:
return intrinsics_mat, inv_intrinsics_mat
@torch.jit.script
def hat(v: torch.Tensor) -> torch.Tensor:
"""
Compute the Hat operator [1] of a batch of 3D vectors.
Args:
v: Batch of vectors of shape `(minibatch , 3)`.
Returns:
Batch of skew-symmetric matrices of shape
`(minibatch, 3 , 3)` where each matrix is of the form:
`[ 0 -v_z v_y ]
[ v_z 0 -v_x ]
[ -v_y v_x 0 ]`
Raises:
ValueError if `v` is of incorrect shape.
[1] https://en.wikipedia.org/wiki/Hat_operator
"""
N, dim = v.shape
# if dim != 3:
# raise ValueError("Input vectors have to be 3-dimensional.")
h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device)
x, y, z = v.unbind(1)
h[:, 0, 1] = -z
h[:, 0, 2] = y
h[:, 1, 0] = z
h[:, 1, 2] = -x
h[:, 2, 0] = -y
h[:, 2, 1] = x
return h
@torch.jit.script
def get_relative_transform(src_R, src_t, tgt_R, tgt_t):
tgt_R_inv = tgt_R.permute([0, 2, 1])
relative_R = torch.matmul(tgt_R_inv, src_R)
relative_t = torch.matmul(tgt_R_inv, src_t - tgt_t)
return relative_R, relative_t
def reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, coord, eps=1e-6):
"""
Convert the depth map's value to another camera pose.
input:
src_R: rotation matrix of source camera
src_t: translation vector of source camera
tgt_R: rotation matrix of target camera
tgt_t: translation vector of target camera
K: intrinsics matrix of the camera
src_disp: disparity map of source camera
tgt_disp: disparity map of target camera
coord: coordinate grids
K_inv: inverse intrinsics matrix of the camera
output:
tgt_depth_from_src: source depth map reprojected to target camera, values are ready for warping.
src_depth_from_tgt: target depth map reprojected to source camera, values are ready for warping.
"""
B, _, H, W = src_disp.shape
src_depth = 1/(src_disp + eps)
tgt_depth = 1/(tgt_disp + eps)
# project 1 to 2
src_depth_flat = src_depth.view([B, 1, H*W])
src_xyz = src_depth_flat * src_R.matmul(K_inv_src.matmul(coord)) + src_t
src_xyz_at_tgt_cam = K_trg.matmul(
tgt_R.transpose(1, 2).matmul(src_xyz - tgt_t))
tgt_depth_from_src = src_xyz_at_tgt_cam[:, 2, :].view([B, 1, H, W])
# project 2 to 1
tgt_depth_flat = tgt_depth.view([B, 1, H*W])
tgt_xyz = tgt_depth_flat * tgt_R.matmul(K_inv_trg.matmul(coord)) + tgt_t
tgt_xyz_at_src_cam = K_src.matmul(
src_R.transpose(1, 2).matmul(tgt_xyz - src_t))
src_depth_from_tgt = tgt_xyz_at_src_cam[:, 2, :].view([B, 1, H, W])
return tgt_depth_from_src, src_depth_from_tgt
# @torch.jit.script
def warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, coord, inv_K, debug_mode=False, use_depth=False):
if debug_mode:
B, C, H, W = src_disp.shape
relative_R, relative_t = get_relative_transform(
src_R, src_t, tgt_R, tgt_t)
print(relative_t.shape)
H_mat = K.matmul(relative_R.matmul(inv_K)) # Nx3x3
flat_disp = src_disp.view([B, 1, H * W]) # Nx1xNpoints
relative_t_flat = relative_t.expand([-1, -1, H*W])
rot_coord = torch.matmul(H_mat, coord)
tr_coord = flat_disp * \
torch.matmul(K, relative_t_flat)
tgt_coord = rot_coord + tr_coord
normalization_factor = (tgt_coord[:, 2:, :] + 1e-6)
rot_coord_normalized = rot_coord / normalization_factor
tr_coord_normalized = tr_coord / normalization_factor
tgt_coord_normalized = rot_coord_normalized + tr_coord_normalized
debug_info = {}
debug_info['tr_coord_normalized'] = tr_coord_normalized
debug_info['rot_coord_normalized'] = rot_coord_normalized
debug_info['tgt_coord_normalized'] = tgt_coord_normalized
debug_info['tr_coord'] = tr_coord
debug_info['rot_coord'] = rot_coord
debug_info['normalization_factor'] = normalization_factor
debug_info['relative_t_flat'] = relative_t_flat
return (tgt_coord_normalized - coord).view([B, 3, H, W]), debug_info
else:
B, C, H, W = src_disp.shape
relative_R, relative_t = get_relative_transform(
src_R, src_t, tgt_R, tgt_t)
H_mat = K.matmul(relative_R.matmul(inv_K)) # Nx3x3
flat_disp = src_disp.view([B, 1, H * W]) # Nx1xNpoints
if use_depth:
tgt_coord = flat_disp * torch.matmul(H_mat, coord) + \
torch.matmul(K, relative_t)
else:
tgt_coord = torch.matmul(H_mat, coord) + flat_disp * \
torch.matmul(K, relative_t)
tgt_coord = tgt_coord / (tgt_coord[:, -1:, :] + 1e-6)
return (tgt_coord - coord).view([B, 3, H, W]), tgt_coord
def unproject_depth(depth, K_inv, R, t, coord):
# this need verification
B, _, H, W = depth.shape
disp_flat = depth.view([B, 1, H * W])
xyz = disp_flat * R.matmul(K_inv.matmul(coord)) + t
return xyz.reshape([B, 3, H, W])
@torch.jit.script
def _so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001):
"""
A helper function that computes the so3 exponential map and,
apart from the rotation matrix, also returns intermediate variables
that can be re-used in other functions.
"""
_, dim = log_rot.shape
# if dim != 3:
# raise ValueError("Input tensor shape has to be Nx3.")
nrms = (log_rot * log_rot).sum(1)
# phis ... rotation angles
rot_angles = torch.clamp(nrms, eps).sqrt()
rot_angles_inv = 1.0 / rot_angles
fac1 = rot_angles_inv * rot_angles.sin()
fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())
skews = hat(log_rot)
skews_square = torch.bmm(skews, skews)
R = (
# pyre-fixme[16]: `float` has no attribute `__getitem__`.
fac1[:, None, None] * skews
+ fac2[:, None, None] * skews_square
+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None]
)
return R, rot_angles, skews, skews_square
def quaternion_to_matrix(quaternions):
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
class CameraPoseDeltaCollection(torch.nn.Module):
def __init__(self, number_of_points=10) -> None:
super().__init__()
zero_rotation = torch.ones([1, 3]) * 1e-3
zero_translation = torch.zeros([1, 3, 1]) + 1e-4
for n in range(number_of_points):
self.register_parameter(
f"delta_rotation_{n}", nn.Parameter(zero_rotation))
self.register_parameter(
f"delta_translation_{n}", nn.Parameter(zero_translation)
)
self.register_buffer("zero_rotation", torch.eye(3)[None, ...])
self.register_buffer("zero_translation", torch.zeros([1, 3, 1]))
self.traced_so3_exp_map = None
self.number_of_points = number_of_points
def get_rotation_and_translation_params(self):
rotation_params = []
translation_params = []
for n in range(self.number_of_points):
rotation_params.append(getattr(self, f"delta_rotation_{n}"))
translation_params.append(getattr(self, f"delta_translation_{n}"))
return rotation_params, translation_params
def set_rotation_and_translation(self, index, rotaion_so3, translation):
delta_rotation = getattr(self, f"delta_rotation_{index}")
delta_translation = getattr(self, f"delta_translation_{index}")
delta_rotation.data = rotaion_so3.detach().clone()
delta_translation.data = translation.detach().clone()
def set_first_frame_pose(self, R, t):
self.zero_rotation.data = R.detach().clone().reshape([1, 3, 3])
self.zero_translation.data = t.detach().clone().reshape([1, 3, 1])
def get_raw_value(self, index):
so3 = getattr(self, f"delta_rotation_{index}")
translation = getattr(self, f"delta_translation_{index}")
return so3, translation
def forward(self, list_of_index):
se_3 = []
t_out = []
for idx in list_of_index:
delta_rotation, delta_translation = self.get_raw_value(idx)
se_3.append(delta_rotation)
t_out.append(delta_translation)
se_3 = torch.cat(se_3, dim=0)
t_out = torch.cat(t_out, dim=0)
if self.traced_so3_exp_map is None:
self.traced_so3_exp_map = torch.jit.trace(
_so3_exp_map, (se_3,))
R_out = _so3_exp_map(se_3)[0]
return R_out, t_out
def forward_index(self, index):
# if index == 0:
# return self.zero_rotation, self.zero_translation
# else:
delta_rotation, delta_translation = self.get_raw_value(index)
if self.traced_so3_exp_map is None:
self.traced_so3_exp_map = torch.jit.trace(
_so3_exp_map, (delta_rotation,))
R = _so3_exp_map(delta_rotation)[0]
return R, delta_translation
class DepthScaleShiftCollection(torch.nn.Module):
def __init__(self, n_points=10, use_inverse=False, grid_size=1):
super().__init__()
self.grid_size = grid_size
for n in range(n_points):
self.register_parameter(
f"shift_{n}", nn.Parameter(torch.FloatTensor([0.0]))
)
self.register_parameter(
f"scale_{n}", nn.Parameter(
torch.ones([1, 1, grid_size, grid_size]))
)
self.use_inverse = use_inverse
self.output_shape = None
def set_outputshape(self, output_shape):
self.output_shape = output_shape
def forward(self, index):
shift = getattr(self, f"shift_{index}")
scale = getattr(self, f"scale_{index}")
if self.use_inverse:
scale = torch.exp(scale) # 1 / (scale ** 4)
if self.grid_size != 1:
scale = F.interpolate(scale, self.output_shape,
mode='bilinear', align_corners=True)
return scale, shift
def set_scale(self, index, scale):
scale_param = getattr(self, f"scale_{index}")
if self.use_inverse:
scale = math.log(scale) # (1 / scale) ** 0.25
scale_param.data.fill_(scale)
def get_scale_data(self, index):
scale = getattr(self, f"scale_{index}").data
if self.use_inverse:
scale = torch.exp(scale) # 1 / (scale ** 4)
if self.grid_size != 1:
scale = F.interpolate(scale, self.output_shape,
mode='bilinear', align_corners=True)
return scale
def check_R_shape(R):
r0, r1, r2 = R.shape
assert r1 == 3 and r2 == 3
def check_t_shape(t):
t0, t1, t2 = t.shape
assert t1 == 3 and t2 == 1
class DepthBasedWarping(nn.Module):
# tested
def __init__(self) -> None:
super().__init__()
def generate_grid(self, H, W, device):
yy, xx = torch.meshgrid(
torch.arange(H, device=device, dtype=torch.float32),
torch.arange(W, device=device, dtype=torch.float32),
)
self.coord = torch.ones(
[1, 3, H, W], device=device, dtype=torch.float32)
self.coord[0, 0, ...] = xx
self.coord[0, 1, ...] = yy
self.coord = self.coord.reshape([1, 3, H * W])
self.jitted_warp_by_disp = None
def reproject_depth(self, src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, eps=1e-6, check_shape=False):
if check_shape:
check_R_shape(src_R)
check_R_shape(tgt_R)
check_t_shape(src_t)
check_t_shape(tgt_t)
check_t_shape(src_disp)
check_t_shape(tgt_disp)
device = src_disp.device
B, _, H, W = src_disp.shape
if not hasattr(self, "coord"):
self.generate_grid(src_disp.shape[2], src_disp.shape[3], device)
else:
if self.coord.shape[-1] != H * W:
del self.coord
self.generate_grid(H, W, device)
return reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, self.coord, eps=eps)
def unproject_depth(self, disp, R, t, K_inv, eps=1e-6, check_shape=False):
if check_shape:
check_R_shape(R)
check_R_shape(t)
_, _, H, W = disp.shape
B = R.shape[0]
device = disp.device
if not hasattr(self, "coord"):
self.generate_grid(H, W, device=device)
else:
if self.coord.shape[-1] != H * W:
del self.coord
self.generate_grid(H, W, device=device)
# if self.jitted_warp_by_disp is None:
# self.jitted_warp_by_disp = torch.jit.trace(
# warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))
return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord)
def forward(
self,
src_R,
src_t,
tgt_R,
tgt_t,
src_disp,
K,
inv_K,
eps=1e-6,
use_depth=False,
check_shape=False,
debug_mode=False,
):
"""warp the current depth frame and generate flow field.
Args:
src_R (FloatTensor): 1x3x3
src_t (FloatTensor): 1x3x1
tgt_R (FloatTensor): Nx3x3
tgt_t (FloatTensor): Nx3x1
src_disp (FloatTensor): Nx1XHxW
src_K (FloatTensor): 1x3x3
"""
if check_shape:
check_R_shape(src_R)
check_R_shape(tgt_R)
check_t_shape(src_t)
check_t_shape(tgt_t)
_, _, H, W = src_disp.shape
B = tgt_R.shape[0]
device = src_disp.device
if not hasattr(self, "coord"):
self.generate_grid(H, W, device=device)
else:
if self.coord.shape[-1] != H * W:
del self.coord
self.generate_grid(H, W, device=device)
# if self.jitted_warp_by_disp is None:
# self.jitted_warp_by_disp = torch.jit.trace(
# warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))
return warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, self.coord, inv_K, debug_mode, use_depth)
class DepthToXYZ(nn.Module):
# tested
def __init__(self) -> None:
super().__init__()
def generate_grid(self, H, W, device):
yy, xx = torch.meshgrid(
torch.arange(H, device=device, dtype=torch.float32),
torch.arange(W, device=device, dtype=torch.float32),
)
self.coord = torch.ones(
[1, 3, H, W], device=device, dtype=torch.float32)
self.coord[0, 0, ...] = xx
self.coord[0, 1, ...] = yy
self.coord = self.coord.reshape([1, 3, H * W])
def forward(self, disp, K_inv, R, t, eps=1e-6, check_shape=False):
"""warp the current depth frame and generate flow field.
Args:
src_R (FloatTensor): 1x3x3
src_t (FloatTensor): 1x3x1
tgt_R (FloatTensor): Nx3x3
tgt_t (FloatTensor): Nx3x1
src_disp (FloatTensor): Nx1XHxW
src_K (FloatTensor): 1x3x3
"""
if check_shape:
check_R_shape(R)
check_R_shape(t)
_, _, H, W = disp.shape
B = R.shape[0]
device = disp.device
if not hasattr(self, "coord"):
self.generate_grid(H, W, device=device)
else:
if self.coord.shape[-1] != H * W:
del self.coord
self.generate_grid(H, W, device=device)
# if self.jitted_warp_by_disp is None:
# self.jitted_warp_by_disp = torch.jit.trace(
# warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))
return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord)
class OccMask(torch.nn.Module):
def __init__(self, th=3):
super(OccMask, self).__init__()
self.th = th
self.base_coord = None
def init_grid(self, shape, device):
H, W = shape
hh, ww = torch.meshgrid(torch.arange(
H).float(), torch.arange(W).float())
coord = torch.zeros([1, H, W, 2])
coord[0, ..., 0] = ww
coord[0, ..., 1] = hh
self.base_coord = coord.to(device)
self.W = W
self.H = H
@torch.no_grad()
def get_oob_mask(self, base_coord, flow_1_2):
target_range = base_coord + flow_1_2.permute([0, 2, 3, 1])
oob_mask = (target_range[..., 0] < 0) | (target_range[..., 0] > self.W-1) | (
target_range[..., 1] < 0) | (target_range[..., 1] > self.H-1)
return ~oob_mask[:, None, ...]
@torch.no_grad()
def get_flow_inconsistency_tensor(self, base_coord, flow_1_2, flow_2_1):
B, C, H, W = flow_1_2.shape
sample_grids = base_coord + flow_1_2.permute([0, 2, 3, 1])
sample_grids[..., 0] /= (W - 1) / 2
sample_grids[..., 1] /= (H - 1) / 2
sample_grids -= 1
sampled_flow = F.grid_sample(
flow_2_1, sample_grids, align_corners=True)
return torch.abs((sampled_flow+flow_1_2).sum(1, keepdim=True))
def forward(self, flow_1_2, flow_2_1):
B, _, H, W = flow_1_2.shape
if self.base_coord is None:
self.init_grid([H, W], device=flow_1_2.device)
base_coord = self.base_coord.expand([B, -1, -1, -1])
oob_mask = self.get_oob_mask(base_coord, flow_1_2)
flow_inconsistency_tensor = self.get_flow_inconsistency_tensor(
base_coord, flow_1_2, flow_2_1)
valid_flow_mask = flow_inconsistency_tensor < self.th
return valid_flow_mask*oob_mask |