File size: 23,074 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
from matplotlib.pyplot import grid
import torch
from torch import nn
from torch.nn import functional as F
import math
from scipy.spatial.transform import Rotation

def tum_to_pose_matrix(pose):
    # pose: [tx, ty, tz, qw, qx, qy, qz]
    assert pose.shape == (7,)
    pose_xyzw = pose[[3, 4, 5, 6]]
    r = Rotation.from_quat(pose_xyzw)
    return np.vstack([np.hstack([r.as_matrix(), pose[:3].reshape(-1, 1)]), [0, 0, 0, 1]])

def depth_regularization_si_weighted(depth_pred, depth_init, pixel_wise_weight=None, pixel_wise_weight_scale=1, pixel_wise_weight_bias=1, eps=1e-6, pixel_weight_normalize=False):
    # scale compute:
    depth_pred = torch.clamp(depth_pred, min=eps)
    depth_init = torch.clamp(depth_init, min=eps)
    log_d_pred = torch.log(depth_pred)
    log_d_init = torch.log(depth_init)
    B, _, H, W = depth_pred.shape
    scale = torch.sum(log_d_init - log_d_pred,
                      dim=[1, 2, 3], keepdim=True)/(H*W)
    if pixel_wise_weight is not None:
        if pixel_weight_normalize:
            norm = torch.max(pixel_wise_weight.detach().view(
                B, -1), dim=1, keepdim=False)[0]
            pixel_wise_weight = pixel_wise_weight / \
                (norm[:, None, None, None]+eps)
        pixel_wise_weight = pixel_wise_weight * \
            pixel_wise_weight_scale + pixel_wise_weight_bias
    else:
        pixel_wise_weight = 1
    si_loss = torch.sum(pixel_wise_weight*(log_d_pred -
                        log_d_init + scale)**2, dim=[1, 2, 3])/(H*W)
    return si_loss.mean()

class WarpImage(torch.nn.Module):
    def __init__(self):
        super(WarpImage, self).__init__()
        self.base_coord = None

    def init_grid(self, shape, device):
        H, W = shape
        hh, ww = torch.meshgrid(torch.arange(
            H).float(), torch.arange(W).float())
        coord = torch.zeros([1, H, W, 2])
        coord[0, ..., 0] = ww
        coord[0, ..., 1] = hh
        self.base_coord = coord.to(device)
        self.W = W
        self.H = H

    def warp_image(self, base_coord, img_1, flow_2_1):
        B, C, H, W = flow_2_1.shape
        sample_grids = base_coord + flow_2_1.permute([0, 2, 3, 1])
        sample_grids[..., 0] /= (W - 1) / 2
        sample_grids[..., 1] /= (H - 1) / 2
        sample_grids -= 1
        warped_image_2_from_1 = F.grid_sample(
            img_1, sample_grids, align_corners=True)
        return warped_image_2_from_1

    def forward(self, img_1, flow_2_1):
        B, _, H, W = flow_2_1.shape
        if self.base_coord is None:
            self.init_grid([H, W], device=flow_2_1.device)
        base_coord = self.base_coord.expand([B, -1, -1, -1])
        return self.warp_image(base_coord, img_1, flow_2_1)


class CameraIntrinsics(nn.Module):
    def __init__(self, init_focal_length=0.45, pixel_size=None):
        super().__init__()
        self.focal_length = nn.Parameter(torch.tensor(init_focal_length))
        self.pixel_size_buffer = pixel_size

    def register_shape(self, orig_shape, opt_shape) -> None:
        self.orig_shape = orig_shape
        self.opt_shape = opt_shape
        H_orig, W_orig = orig_shape
        H_opt, W_opt = opt_shape
        if self.pixel_size_buffer is None:
            # initialize as 35mm film
            pixel_size = 0.433 / (H_orig ** 2 + W_orig ** 2) ** 0.5
        else:
            pixel_size = self.pixel_size_buffer
        self.register_buffer("pixel_size", torch.tensor(pixel_size))
        intrinsics_mat_buffer = torch.zeros(3, 3)
        intrinsics_mat_buffer[0, -1] = (W_opt - 1) / 2
        intrinsics_mat_buffer[1, -1] = (H_opt - 1) / 2
        intrinsics_mat_buffer[2, -1] = 1
        self.register_buffer("intrinsics_mat", intrinsics_mat_buffer)
        self.register_buffer("scale_H", torch.tensor(
            H_opt / (H_orig * pixel_size)))
        self.register_buffer("scale_W", torch.tensor(
            W_opt / (W_orig * pixel_size)))

    def get_K_and_inv(self, with_batch_dim=True) -> torch.Tensor:
        intrinsics_mat = self.intrinsics_mat.clone()
        intrinsics_mat[0, 0] = self.focal_length * self.scale_W
        intrinsics_mat[1, 1] = self.focal_length * self.scale_H
        inv_intrinsics_mat = torch.linalg.inv(intrinsics_mat)
        if with_batch_dim:
            return intrinsics_mat[None, ...], inv_intrinsics_mat[None, ...]
        else:
            return intrinsics_mat, inv_intrinsics_mat


@torch.jit.script
def hat(v: torch.Tensor) -> torch.Tensor:
    """
    Compute the Hat operator [1] of a batch of 3D vectors.

    Args:
        v: Batch of vectors of shape `(minibatch , 3)`.

    Returns:
        Batch of skew-symmetric matrices of shape
        `(minibatch, 3 , 3)` where each matrix is of the form:
            `[    0  -v_z   v_y ]
             [  v_z     0  -v_x ]
             [ -v_y   v_x     0 ]`

    Raises:
        ValueError if `v` is of incorrect shape.

    [1] https://en.wikipedia.org/wiki/Hat_operator
    """

    N, dim = v.shape
    # if dim != 3:
    #    raise ValueError("Input vectors have to be 3-dimensional.")

    h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device)

    x, y, z = v.unbind(1)

    h[:, 0, 1] = -z
    h[:, 0, 2] = y
    h[:, 1, 0] = z
    h[:, 1, 2] = -x
    h[:, 2, 0] = -y
    h[:, 2, 1] = x

    return h


@torch.jit.script
def get_relative_transform(src_R, src_t, tgt_R, tgt_t):
    tgt_R_inv = tgt_R.permute([0, 2, 1])
    relative_R = torch.matmul(tgt_R_inv, src_R)
    relative_t = torch.matmul(tgt_R_inv, src_t - tgt_t)
    return relative_R, relative_t


def reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, coord, eps=1e-6):
    """
    Convert the depth map's value to another camera pose.
    input:
        src_R: rotation matrix of source camera
        src_t: translation vector of source camera
        tgt_R: rotation matrix of target camera
        tgt_t: translation vector of target camera
        K: intrinsics matrix of the camera
        src_disp: disparity map of source camera
        tgt_disp: disparity map of target camera
        coord: coordinate grids
        K_inv: inverse intrinsics matrix of the camera
    output:
        tgt_depth_from_src: source depth map reprojected to target camera, values are ready for warping.
        src_depth_from_tgt: target depth map reprojected to source camera, values are ready for warping.
    """
    B, _, H, W = src_disp.shape

    src_depth = 1/(src_disp + eps)
    tgt_depth = 1/(tgt_disp + eps)
    # project 1 to 2

    src_depth_flat = src_depth.view([B, 1, H*W])
    src_xyz = src_depth_flat * src_R.matmul(K_inv_src.matmul(coord)) + src_t
    src_xyz_at_tgt_cam = K_trg.matmul(
        tgt_R.transpose(1, 2).matmul(src_xyz - tgt_t))
    tgt_depth_from_src = src_xyz_at_tgt_cam[:, 2, :].view([B, 1, H, W])
    # project 2 to 1
    tgt_depth_flat = tgt_depth.view([B, 1, H*W])
    tgt_xyz = tgt_depth_flat * tgt_R.matmul(K_inv_trg.matmul(coord)) + tgt_t
    tgt_xyz_at_src_cam = K_src.matmul(
        src_R.transpose(1, 2).matmul(tgt_xyz - src_t))
    src_depth_from_tgt = tgt_xyz_at_src_cam[:, 2, :].view([B, 1, H, W])
    return tgt_depth_from_src, src_depth_from_tgt


# @torch.jit.script
def warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, coord, inv_K, debug_mode=False, use_depth=False):

    if debug_mode:
        B, C, H, W = src_disp.shape
        relative_R, relative_t = get_relative_transform(
            src_R, src_t, tgt_R, tgt_t)

        print(relative_t.shape)
        H_mat = K.matmul(relative_R.matmul(inv_K))  # Nx3x3
        flat_disp = src_disp.view([B, 1, H * W])  # Nx1xNpoints
        relative_t_flat = relative_t.expand([-1, -1, H*W])
        rot_coord = torch.matmul(H_mat, coord)
        tr_coord = flat_disp * \
            torch.matmul(K, relative_t_flat)
        tgt_coord = rot_coord + tr_coord
        normalization_factor = (tgt_coord[:, 2:, :] + 1e-6)
        rot_coord_normalized = rot_coord / normalization_factor
        tr_coord_normalized = tr_coord / normalization_factor
        tgt_coord_normalized = rot_coord_normalized + tr_coord_normalized
        debug_info = {}
        debug_info['tr_coord_normalized'] = tr_coord_normalized
        debug_info['rot_coord_normalized'] = rot_coord_normalized
        debug_info['tgt_coord_normalized'] = tgt_coord_normalized
        debug_info['tr_coord'] = tr_coord
        debug_info['rot_coord'] = rot_coord
        debug_info['normalization_factor'] = normalization_factor
        debug_info['relative_t_flat'] = relative_t_flat
        return (tgt_coord_normalized - coord).view([B, 3, H, W]), debug_info
    else:
        B, C, H, W = src_disp.shape
        relative_R, relative_t = get_relative_transform(
            src_R, src_t, tgt_R, tgt_t)
        H_mat = K.matmul(relative_R.matmul(inv_K))  # Nx3x3
        flat_disp = src_disp.view([B, 1, H * W])  # Nx1xNpoints
        if use_depth:
            tgt_coord = flat_disp * torch.matmul(H_mat, coord) + \
                torch.matmul(K, relative_t)
        else:
            tgt_coord = torch.matmul(H_mat, coord) + flat_disp * \
                torch.matmul(K, relative_t)
        tgt_coord = tgt_coord / (tgt_coord[:, -1:, :] + 1e-6)
        return (tgt_coord - coord).view([B, 3, H, W]), tgt_coord


def unproject_depth(depth, K_inv, R, t, coord):
    # this need verification
    B, _, H, W = depth.shape
    disp_flat = depth.view([B, 1, H * W])
    xyz = disp_flat * R.matmul(K_inv.matmul(coord)) + t
    return xyz.reshape([B, 3, H, W])


@torch.jit.script
def _so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001):
    """
    A helper function that computes the so3 exponential map and,
    apart from the rotation matrix, also returns intermediate variables
    that can be re-used in other functions.
    """
    _, dim = log_rot.shape
    # if dim != 3:
    #    raise ValueError("Input tensor shape has to be Nx3.")

    nrms = (log_rot * log_rot).sum(1)
    # phis ... rotation angles
    rot_angles = torch.clamp(nrms, eps).sqrt()
    rot_angles_inv = 1.0 / rot_angles
    fac1 = rot_angles_inv * rot_angles.sin()
    fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())
    skews = hat(log_rot)
    skews_square = torch.bmm(skews, skews)

    R = (
        # pyre-fixme[16]: `float` has no attribute `__getitem__`.
        fac1[:, None, None] * skews
        + fac2[:, None, None] * skews_square
        + torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None]
    )

    return R, rot_angles, skews, skews_square


def quaternion_to_matrix(quaternions):
    """
    Convert rotations given as quaternions to rotation matrices.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


class CameraPoseDeltaCollection(torch.nn.Module):
    def __init__(self, number_of_points=10) -> None:
        super().__init__()
        zero_rotation = torch.ones([1, 3]) * 1e-3
        zero_translation = torch.zeros([1, 3, 1]) + 1e-4
        for n in range(number_of_points):
            self.register_parameter(
                f"delta_rotation_{n}", nn.Parameter(zero_rotation))
            self.register_parameter(
                f"delta_translation_{n}", nn.Parameter(zero_translation)
            )
        self.register_buffer("zero_rotation", torch.eye(3)[None, ...])
        self.register_buffer("zero_translation", torch.zeros([1, 3, 1]))
        self.traced_so3_exp_map = None
        self.number_of_points = number_of_points

    def get_rotation_and_translation_params(self):
        rotation_params = []
        translation_params = []
        for n in range(self.number_of_points):
            rotation_params.append(getattr(self, f"delta_rotation_{n}"))
            translation_params.append(getattr(self, f"delta_translation_{n}"))
        return rotation_params, translation_params

    def set_rotation_and_translation(self, index, rotaion_so3, translation):
        delta_rotation = getattr(self, f"delta_rotation_{index}")
        delta_translation = getattr(self, f"delta_translation_{index}")
        delta_rotation.data = rotaion_so3.detach().clone()
        delta_translation.data = translation.detach().clone()

    def set_first_frame_pose(self, R, t):
        self.zero_rotation.data = R.detach().clone().reshape([1, 3, 3])
        self.zero_translation.data = t.detach().clone().reshape([1, 3, 1])

    def get_raw_value(self, index):
        so3 = getattr(self, f"delta_rotation_{index}")
        translation = getattr(self, f"delta_translation_{index}")
        return so3, translation

    def forward(self, list_of_index):
        se_3 = []
        t_out = []
        for idx in list_of_index:
            delta_rotation, delta_translation = self.get_raw_value(idx)
            se_3.append(delta_rotation)
            t_out.append(delta_translation)
        se_3 = torch.cat(se_3, dim=0)
        t_out = torch.cat(t_out, dim=0)
        if self.traced_so3_exp_map is None:
            self.traced_so3_exp_map = torch.jit.trace(
                _so3_exp_map, (se_3,))
        R_out = _so3_exp_map(se_3)[0]
        return R_out, t_out

    def forward_index(self, index):
        # if index == 0:
        #     return self.zero_rotation, self.zero_translation
        # else:
        delta_rotation, delta_translation = self.get_raw_value(index)
        if self.traced_so3_exp_map is None:
            self.traced_so3_exp_map = torch.jit.trace(
                _so3_exp_map, (delta_rotation,))
        R = _so3_exp_map(delta_rotation)[0]
        return R, delta_translation


class DepthScaleShiftCollection(torch.nn.Module):
    def __init__(self, n_points=10, use_inverse=False, grid_size=1):
        super().__init__()
        self.grid_size = grid_size
        for n in range(n_points):
            self.register_parameter(
                f"shift_{n}", nn.Parameter(torch.FloatTensor([0.0]))
            )
            self.register_parameter(
                f"scale_{n}", nn.Parameter(
                    torch.ones([1, 1, grid_size, grid_size]))
            )

        self.use_inverse = use_inverse
        self.output_shape = None

    def set_outputshape(self, output_shape):
        self.output_shape = output_shape

    def forward(self, index):
        shift = getattr(self, f"shift_{index}")
        scale = getattr(self, f"scale_{index}")
        if self.use_inverse:
            scale = torch.exp(scale)  # 1 / (scale ** 4)
        if self.grid_size != 1:
            scale = F.interpolate(scale, self.output_shape,
                                  mode='bilinear', align_corners=True)
        return scale, shift

    def set_scale(self, index, scale):
        scale_param = getattr(self, f"scale_{index}")
        if self.use_inverse:
            scale = math.log(scale)  # (1 / scale) ** 0.25
        scale_param.data.fill_(scale)

    def get_scale_data(self, index):
        scale = getattr(self, f"scale_{index}").data
        if self.use_inverse:
            scale = torch.exp(scale)  # 1 / (scale ** 4)
        if self.grid_size != 1:
            scale = F.interpolate(scale, self.output_shape,
                                  mode='bilinear', align_corners=True)
        return scale


def check_R_shape(R):
    r0, r1, r2 = R.shape
    assert r1 == 3 and r2 == 3


def check_t_shape(t):
    t0, t1, t2 = t.shape
    assert t1 == 3 and t2 == 1


class DepthBasedWarping(nn.Module):
    # tested
    def __init__(self) -> None:
        super().__init__()

    def generate_grid(self, H, W, device):
        yy, xx = torch.meshgrid(
            torch.arange(H, device=device, dtype=torch.float32),
            torch.arange(W, device=device, dtype=torch.float32),
        )
        self.coord = torch.ones(
            [1, 3, H, W], device=device, dtype=torch.float32)
        self.coord[0, 0, ...] = xx
        self.coord[0, 1, ...] = yy
        self.coord = self.coord.reshape([1, 3, H * W])
        self.jitted_warp_by_disp = None

    def reproject_depth(self, src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, eps=1e-6, check_shape=False):
        if check_shape:
            check_R_shape(src_R)
            check_R_shape(tgt_R)
            check_t_shape(src_t)
            check_t_shape(tgt_t)
            check_t_shape(src_disp)
            check_t_shape(tgt_disp)
        device = src_disp.device
        B, _, H, W = src_disp.shape
        if not hasattr(self, "coord"):
            self.generate_grid(src_disp.shape[2], src_disp.shape[3], device)
        else:
            if self.coord.shape[-1] != H * W:
                del self.coord
                self.generate_grid(H, W, device)
        return reproject_depth(src_R, src_t, src_disp, tgt_R, tgt_t, tgt_disp, K_src, K_inv_src, K_trg, K_inv_trg, self.coord, eps=eps)

    def unproject_depth(self, disp, R, t, K_inv, eps=1e-6, check_shape=False):
        if check_shape:
            check_R_shape(R)
            check_R_shape(t)

        _, _, H, W = disp.shape
        B = R.shape[0]
        device = disp.device
        if not hasattr(self, "coord"):
            self.generate_grid(H, W, device=device)
        else:
            if self.coord.shape[-1] != H * W:
                del self.coord
                self.generate_grid(H, W, device=device)
        # if self.jitted_warp_by_disp is None:
        # self.jitted_warp_by_disp = torch.jit.trace(
        #     warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))
        return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord)

    def forward(
        self,
        src_R,
        src_t,
        tgt_R,
        tgt_t,
        src_disp,
        K,
        inv_K,
        eps=1e-6,
        use_depth=False,
        check_shape=False,
        debug_mode=False,
    ):
        """warp the current depth frame and generate flow field.

        Args:
            src_R (FloatTensor): 1x3x3
            src_t (FloatTensor): 1x3x1
            tgt_R (FloatTensor): Nx3x3
            tgt_t (FloatTensor): Nx3x1
            src_disp (FloatTensor): Nx1XHxW
            src_K (FloatTensor): 1x3x3
        """
        if check_shape:
            check_R_shape(src_R)
            check_R_shape(tgt_R)
            check_t_shape(src_t)
            check_t_shape(tgt_t)

        _, _, H, W = src_disp.shape
        B = tgt_R.shape[0]
        device = src_disp.device
        if not hasattr(self, "coord"):
            self.generate_grid(H, W, device=device)
        else:
            if self.coord.shape[-1] != H * W:
                del self.coord
                self.generate_grid(H, W, device=device)
        # if self.jitted_warp_by_disp is None:
        # self.jitted_warp_by_disp = torch.jit.trace(
        #     warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))

        return warp_by_disp(src_R, src_t, tgt_R, tgt_t, K, src_disp, self.coord, inv_K, debug_mode, use_depth)


class DepthToXYZ(nn.Module):
    # tested
    def __init__(self) -> None:
        super().__init__()

    def generate_grid(self, H, W, device):
        yy, xx = torch.meshgrid(
            torch.arange(H, device=device, dtype=torch.float32),
            torch.arange(W, device=device, dtype=torch.float32),
        )
        self.coord = torch.ones(
            [1, 3, H, W], device=device, dtype=torch.float32)
        self.coord[0, 0, ...] = xx
        self.coord[0, 1, ...] = yy
        self.coord = self.coord.reshape([1, 3, H * W])

    def forward(self, disp, K_inv, R, t, eps=1e-6, check_shape=False):
        """warp the current depth frame and generate flow field.

        Args:
            src_R (FloatTensor): 1x3x3
            src_t (FloatTensor): 1x3x1
            tgt_R (FloatTensor): Nx3x3
            tgt_t (FloatTensor): Nx3x1
            src_disp (FloatTensor): Nx1XHxW
            src_K (FloatTensor): 1x3x3
        """
        if check_shape:
            check_R_shape(R)
            check_R_shape(t)

        _, _, H, W = disp.shape
        B = R.shape[0]
        device = disp.device
        if not hasattr(self, "coord"):
            self.generate_grid(H, W, device=device)
        else:
            if self.coord.shape[-1] != H * W:
                del self.coord
                self.generate_grid(H, W, device=device)
        # if self.jitted_warp_by_disp is None:
        # self.jitted_warp_by_disp = torch.jit.trace(
        #     warp_by_disp, (src_R.detach(), src_t.detach(), tgt_R.detach(), tgt_t.detach(), K, src_disp.detach(), self.coord, inv_K))

        return unproject_depth(1 / (disp + eps), K_inv, R, t, self.coord)

class OccMask(torch.nn.Module):
    def __init__(self, th=3):
        super(OccMask, self).__init__()
        self.th = th
        self.base_coord = None

    def init_grid(self, shape, device):
        H, W = shape
        hh, ww = torch.meshgrid(torch.arange(
            H).float(), torch.arange(W).float())
        coord = torch.zeros([1, H, W, 2])
        coord[0, ..., 0] = ww
        coord[0, ..., 1] = hh
        self.base_coord = coord.to(device)
        self.W = W
        self.H = H

    @torch.no_grad()
    def get_oob_mask(self, base_coord, flow_1_2):
        target_range = base_coord + flow_1_2.permute([0, 2, 3, 1])
        oob_mask = (target_range[..., 0] < 0) | (target_range[..., 0] > self.W-1) | (
            target_range[..., 1] < 0) | (target_range[..., 1] > self.H-1)
        return ~oob_mask[:, None, ...]

    @torch.no_grad()
    def get_flow_inconsistency_tensor(self, base_coord, flow_1_2, flow_2_1):
        B, C, H, W = flow_1_2.shape
        sample_grids = base_coord + flow_1_2.permute([0, 2, 3, 1])
        sample_grids[..., 0] /= (W - 1) / 2
        sample_grids[..., 1] /= (H - 1) / 2
        sample_grids -= 1
        sampled_flow = F.grid_sample(
            flow_2_1, sample_grids, align_corners=True)
        return torch.abs((sampled_flow+flow_1_2).sum(1, keepdim=True))

    def forward(self, flow_1_2, flow_2_1):
        B, _, H, W = flow_1_2.shape
        if self.base_coord is None:
            self.init_grid([H, W], device=flow_1_2.device)
        base_coord = self.base_coord.expand([B, -1, -1, -1])
        oob_mask = self.get_oob_mask(base_coord, flow_1_2)
        flow_inconsistency_tensor = self.get_flow_inconsistency_tensor(
            base_coord, flow_1_2, flow_2_1)
        valid_flow_mask = flow_inconsistency_tensor < self.th
        return valid_flow_mask*oob_mask