File size: 12,444 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import re
from copy import deepcopy
from pathlib import Path

import evo.main_ape as main_ape
import evo.main_rpe as main_rpe
import matplotlib.pyplot as plt
import numpy as np
from evo.core import sync
from evo.core.metrics import PoseRelation, Unit
from evo.core.trajectory import PosePath3D, PoseTrajectory3D
from evo.tools import file_interface, plot
from scipy.spatial.transform import Rotation


def sintel_cam_read(filename):
    """Read camera data, return (M,N) tuple.

    M is the intrinsic matrix, N is the extrinsic matrix, so that

    x = M*N*X,
    with x being a point in homogeneous image pixel coordinates, X being a
    point in homogeneous world coordinates.
    """
    TAG_FLOAT = 202021.25

    f = open(filename, "rb")
    check = np.fromfile(f, dtype=np.float32, count=1)[0]
    assert (
        check == TAG_FLOAT
    ), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
        TAG_FLOAT, check
    )
    M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3))
    N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4))
    return M, N


def load_replica_traj(gt_file):
    traj_w_c = np.loadtxt(gt_file)
    assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16
    poses = [
        np.array(
            [
                [r[0], r[1], r[2], r[3]],
                [r[4], r[5], r[6], r[7]],
                [r[8], r[9], r[10], r[11]],
                [0, 0, 0, 1],
            ]
        )
        for r in traj_w_c
    ]

    pose_path = PosePath3D(poses_se3=poses)
    timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float)

    traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat)
    xyz = traj.positions_xyz
    # shift -1 column -> w in back column
    # quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1)
    # uncomment this line if the quaternion is in scalar-first format
    quat = traj.orientations_quat_wxyz

    traj_tum = np.column_stack((xyz, quat))
    return (traj_tum, timestamps_mat)

def load_colmap_traj(gt_file):
    traj_w_c = np.load(gt_file).reshape(-1, 16)
    assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16
    poses = [
        np.array(
            [
                [r[0], r[1], r[2], r[3]],
                [r[4], r[5], r[6], r[7]],
                [r[8], r[9], r[10], r[11]],
                [0, 0, 0, 1],
            ]
        )
        for r in traj_w_c
    ]

    pose_path = PosePath3D(poses_se3=poses)
    timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float)

    traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat)
    xyz = traj.positions_xyz
    # shift -1 column -> w in back column
    # quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1)
    # uncomment this line if the quaternion is in scalar-first format
    quat = traj.orientations_quat_wxyz

    traj_tum = np.column_stack((xyz, quat))
    return (traj_tum, timestamps_mat)

def load_sintel_traj(gt_file): # './data/sintel/training/camdata_left/alley_2'
    # Refer to ParticleSfM
    gt_pose_lists = sorted(os.listdir(gt_file))
    gt_pose_lists = [os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam")]
    tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists]
    gt_poses = [sintel_cam_read(f)[1] for f in gt_pose_lists] # [1] means get the extrinsic
    xyzs, wxyzs = [], []
    tum_gt_poses = []
    for gt_pose in gt_poses:
        gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0)
        gt_pose_inv = np.linalg.inv(gt_pose)  # world2cam -> cam2world
        xyz = gt_pose_inv[:3, -1]
        xyzs.append(xyz)
        R = Rotation.from_matrix(gt_pose_inv[:3, :3])
        xyzw = R.as_quat()  # scalar-last for scipy
        wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]])
        wxyzs.append(wxyz)
        tum_gt_pose = np.concatenate([xyz, wxyz], 0) #TODO: check if this is correct
        tum_gt_poses.append(tum_gt_pose)

    tum_gt_poses = np.stack(tum_gt_poses, 0)
    tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean(
        tum_gt_poses[:, :3], 0, keepdims=True
    )
    tt = np.expand_dims(np.stack(tstamps, 0), -1)
    return tum_gt_poses, tt


def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None):
    """Read trajectory format. Return in TUM-RGBD format.
    Returns:
        traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw)
        timestamps_mat (N, 1): timestamps
    """
    if traj_format == "replica":
        traj_tum, timestamps_mat = load_replica_traj(gt_traj_file)
    elif traj_format == "sintel":
        traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file)
    elif traj_format in ["tum", "tartanair"]:
        traj = file_interface.read_tum_trajectory_file(gt_traj_file)
        xyz = traj.positions_xyz
        quat = traj.orientations_quat_wxyz
        timestamps_mat = traj.timestamps
        traj_tum = np.column_stack((xyz, quat))
    else:
        raise NotImplementedError

    traj_tum = traj_tum[skip::stride]
    timestamps_mat = timestamps_mat[skip::stride]
    if num_frames is not None:
        traj_tum = traj_tum[:num_frames]
        timestamps_mat = timestamps_mat[:num_frames]
    return traj_tum, timestamps_mat


def update_timestamps(gt_file, traj_format, skip=0, stride=1):
    """Update timestamps given a"""
    if traj_format == "tum":
        traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt")
        timestamps = load_timestamps(traj_t_map_file, traj_format)
        return timestamps[skip::stride]
    elif traj_format == "tartanair":
        traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt")
        timestamps = load_timestamps(traj_t_map_file, traj_format)
        return timestamps[skip::stride]


def load_timestamps(time_file, traj_format="replica"):
    if traj_format in ["tum", "tartanair"]:
        with open(time_file, "r+") as f:
            lines = f.readlines()
        timestamps_mat = [
            float(x.split(" ")[0]) for x in lines if not x.startswith("#")
        ]
        return timestamps_mat


def make_traj(args) -> PoseTrajectory3D:
    if isinstance(args, tuple) or isinstance(args, list):
        traj, tstamps = args
        return PoseTrajectory3D(
            positions_xyz=traj[:, :3],
            orientations_quat_wxyz=traj[:, 3:],
            timestamps=tstamps,
        )
    assert isinstance(args, PoseTrajectory3D), type(args)
    return deepcopy(args)


def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1):
    
    if sample_stride > 1:
        pred_traj[0] = pred_traj[0][::sample_stride]
        pred_traj[1] = pred_traj[1][::sample_stride]
        if gt_traj is not None:
            updated_gt_traj = []
            updated_gt_traj.append(gt_traj[0][::sample_stride])
            updated_gt_traj.append(gt_traj[1][::sample_stride])
            gt_traj = updated_gt_traj
    
    pred_traj = make_traj(pred_traj)

    if gt_traj is not None:
        gt_traj = make_traj(gt_traj)

        if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
            pred_traj.timestamps = gt_traj.timestamps
        else:
            print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])

        gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)

    # ATE
    traj_ref = gt_traj
    traj_est = pred_traj

    ate_result = main_ape.ape(
        traj_ref,
        traj_est,
        est_name="traj",
        pose_relation=PoseRelation.translation_part,
        align=True,
        correct_scale=True,
    )

    ate = ate_result.stats["rmse"]

    # RPE rotation and translation
    delta_list = [1]
    rpe_rots, rpe_transs = [], []
    for delta in delta_list:
        rpe_rots_result = main_rpe.rpe(
            traj_ref,
            traj_est,
            est_name="traj",
            pose_relation=PoseRelation.rotation_angle_deg,
            align=True,
            correct_scale=True,
            delta=delta,
            delta_unit=Unit.frames,
            rel_delta_tol=0.01,
            all_pairs=True,
        )

        rot = rpe_rots_result.stats["rmse"]
        rpe_rots.append(rot)

    for delta in delta_list:
        rpe_transs_result = main_rpe.rpe(
            traj_ref,
            traj_est,
            est_name="traj",
            pose_relation=PoseRelation.translation_part,
            align=True,
            correct_scale=True,
            delta=delta,
            delta_unit=Unit.frames,
            rel_delta_tol=0.01,
            all_pairs=True,
        )

        trans = rpe_transs_result.stats["rmse"]
        rpe_transs.append(trans)

    rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots)
    with open(filename, "w+") as f:
        f.write(f"Seq: {seq} \n\n")
        f.write(f"{ate_result}")
        f.write(f"{rpe_rots_result}")
        f.write(f"{rpe_transs_result}")

    print(f"Save results to {filename}")
    return ate, rpe_trans, rpe_rot


def best_plotmode(traj):
    _, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0))
    plot_axes = "xyz"[i2] + "xyz"[i1]
    return getattr(plot.PlotMode, plot_axes)


def plot_trajectory(
    pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True
):
    pred_traj = make_traj(pred_traj)

    if gt_traj is not None:
        gt_traj = make_traj(gt_traj)
        if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
            pred_traj.timestamps = gt_traj.timestamps
        else:
            print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])

        gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)

        if align:
            pred_traj.align(gt_traj, correct_scale=correct_scale)

    plot_collection = plot.PlotCollection("PlotCol")
    fig = plt.figure(figsize=(8, 8))
    plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj)
    ax = plot.prepare_axis(fig, plot_mode)
    ax.set_title(title)
    if gt_traj is not None:
        plot.traj(ax, plot_mode, gt_traj, "--", "gray", "Ground Truth")
    plot.traj(ax, plot_mode, pred_traj, "-", "blue", "Predicted")
    plot_collection.add_figure("traj_error", fig)
    plot_collection.export(filename, confirm_overwrite=False)
    plt.close(fig=fig)
    print(f"Saved trajectory to {filename.replace('.png','')}_traj_error.png")


def save_trajectory_tum_format(traj, filename):
    traj = make_traj(traj)
    tostr = lambda a: " ".join(map(str, a))
    with Path(filename).open("w") as f:
        for i in range(traj.num_poses):
            f.write(
                f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n"
            )
    print(f"Saved trajectory to {filename}")


def extract_metrics(file_path):
    with open(file_path, 'r') as file:
        content = file.read()
    
    # Extract metrics using regex
    ate_match = re.search(r'APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL)
    rpe_trans_match = re.search(r'RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)', content, re.DOTALL)
    rpe_rot_match = re.search(r'RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)', content, re.DOTALL)
    
    ate = float(ate_match.group(1)) if ate_match else 0.0
    rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0
    rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0
    
    return ate, rpe_trans, rpe_rot

def process_directory(directory):
    results = []
    for root, _, files in os.walk(directory):
        if files is not None:
            files = sorted(files)
        for file in files:
            if file.endswith('_metric.txt'):
                file_path = os.path.join(root, file)
                seq_name = file.replace('_eval_metric.txt', '')
                ate, rpe_trans, rpe_rot = extract_metrics(file_path)
                results.append((seq_name, ate, rpe_trans, rpe_rot))
    
    return results

def calculate_averages(results):
    total_ate = sum(r[1] for r in results)
    total_rpe_trans = sum(r[2] for r in results)
    total_rpe_rot = sum(r[3] for r in results)
    count = len(results)
    
    if count == 0:
        return 0.0, 0.0, 0.0

    avg_ate = total_ate / count
    avg_rpe_trans = total_rpe_trans / count
    avg_rpe_rot = total_rpe_rot / count
    
    return avg_ate, avg_rpe_trans, avg_rpe_rot