File size: 11,367 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from update import BasicUpdateBlock, SmallUpdateBlock, BasicUpdateBlock2
from extractor import BasicEncoder, SmallEncoder, ResNetFPN
from corr import CorrBlock, AlternateCorrBlock, CorrBlock2
from utils.utils import bilinear_sampler, coords_grid, upflow8, InputPadder, coords_grid2
from layer import conv3x3
import math

try:
    autocast = torch.cuda.amp.autocast
except:
    # dummy autocast for PyTorch < 1.6
    class autocast:
        def __init__(self, enabled):
            pass
        def __enter__(self):
            pass
        def __exit__(self, *args):
            pass


class RAFT(nn.Module):
    def __init__(self, args):
        super(RAFT, self).__init__()
        self.args = args

        if args.small:
            self.hidden_dim = hdim = 96
            self.context_dim = cdim = 64
            args.corr_levels = 4
            args.corr_radius = 3
        
        else:
            self.hidden_dim = hdim = 128
            self.context_dim = cdim = 128
            args.corr_levels = 4
            args.corr_radius = 4

        if 'dropout' not in self.args:
            self.args.dropout = 0

        if 'alternate_corr' not in self.args:
            self.args.alternate_corr = False

        # feature network, context network, and update block
        if args.small:
            self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)        
            self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
            self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)

        else:
            self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)        
            self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
            self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
        N, C, H, W = img.shape
        coords0 = coords_grid(N, H//8, W//8).to(img.device)
        coords1 = coords_grid(N, H//8, W//8).to(img.device)

        # optical flow computed as difference: flow = coords1 - coords0
        return coords0, coords1

    def upsample_flow(self, flow, mask):
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
        N, _, H, W = flow.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        return up_flow.reshape(N, 2, 8*H, 8*W)


    def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
        """ Estimate optical flow between pair of frames """

        image1 = 2 * (image1 / 255.0) - 1.0
        image2 = 2 * (image2 / 255.0) - 1.0

        image1 = image1.contiguous()
        image2 = image2.contiguous()

        hdim = self.hidden_dim
        cdim = self.context_dim

        # run the feature network
        with autocast(enabled=self.args.mixed_precision):
            fmap1, fmap2 = self.fnet([image1, image2])        
        
        fmap1 = fmap1.float()
        fmap2 = fmap2.float()
        if self.args.alternate_corr:
            corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
        else:
            corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)

        # run the context network
        with autocast(enabled=self.args.mixed_precision):
            cnet = self.cnet(image1)
            net, inp = torch.split(cnet, [hdim, cdim], dim=1)
            net = torch.tanh(net)
            inp = torch.relu(inp)

        coords0, coords1 = self.initialize_flow(image1)

        if flow_init is not None:
            coords1 = coords1 + flow_init

        flow_predictions = []
        for itr in range(iters):
            coords1 = coords1.detach()
            corr = corr_fn(coords1) # index correlation volume

            flow = coords1 - coords0
            with autocast(enabled=self.args.mixed_precision):
                net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)

            # F(t+1) = F(t) + \Delta(t)
            coords1 = coords1 + delta_flow

            # upsample predictions
            if up_mask is None:
                flow_up = upflow8(coords1 - coords0)
            else:
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)
            
            flow_predictions.append(flow_up)

        if test_mode:
            return coords1 - coords0, flow_up
            
        return flow_predictions
##
# given depth, warp according to camera params.

# given flow+depth, warp in 2D

class RAFT2(nn.Module):
    def __init__(self, args):
        super(RAFT2, self).__init__()
        self.args = args
        self.output_dim = args.dim * 2
        
        self.args.corr_levels = 4
        self.args.corr_radius = args.radius
        self.args.corr_channel = args.corr_levels * (args.radius * 2 + 1) ** 2
        self.cnet = ResNetFPN(args, input_dim=6, output_dim=2 * self.args.dim, norm_layer=nn.BatchNorm2d, init_weight=True)

        # conv for iter 0 results
        self.init_conv = conv3x3(2 * args.dim, 2 * args.dim)
        self.upsample_weight = nn.Sequential(
            # convex combination of 3x3 patches
            nn.Conv2d(args.dim, args.dim * 2, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(args.dim * 2, 64 * 9, 1, padding=0)
        )
        self.flow_head = nn.Sequential(
            # flow(2) + weight(2) + log_b(2)
            nn.Conv2d(args.dim, 2 * args.dim, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(2 * args.dim, 6, 3, padding=1)
        )
        if args.iters > 0:
            self.fnet = ResNetFPN(args, input_dim=3, output_dim=self.output_dim, norm_layer=nn.BatchNorm2d, init_weight=True)
            self.update_block = BasicUpdateBlock2(args, hdim=args.dim, cdim=args.dim)
    
    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords2 - coords1"""
        N, C, H, W = img.shape
        coords1 = coords_grid(N, H//8, W//8, device=img.device)
        coords2 = coords_grid(N, H//8, W//8, device=img.device)
        return coords1, coords2

    def upsample_data(self, flow, info, mask):
        """ Upsample [H/8, W/8, C] -> [H, W, C] using convex combination """
        N, C, H, W = info.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
        up_info = F.unfold(info, [3, 3], padding=1)
        up_info = up_info.view(N, C, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        up_info = torch.sum(mask * up_info, dim=2)
        up_info = up_info.permute(0, 1, 4, 2, 5, 3)
        
        return up_flow.reshape(N, 2, 8*H, 8*W), up_info.reshape(N, C, 8*H, 8*W)

    def forward(self, image1, image2, iters=None, flow_gt=None, test_mode=False):
        """ Estimate optical flow between pair of frames """
        N, _, H, W = image1.shape
        if iters is None:
            iters = self.args.iters
        if flow_gt is None:
            flow_gt = torch.zeros(N, 2, H, W, device=image1.device)

        image1 = 2 * (image1 / 255.0) - 1.0
        image2 = 2 * (image2 / 255.0) - 1.0
        image1 = image1.contiguous()
        image2 = image2.contiguous()
        flow_predictions = []
        info_predictions = []

        # padding
        padder = InputPadder(image1.shape)
        image1, image2 = padder.pad(image1, image2)
        N, _, H, W = image1.shape
        dilation = torch.ones(N, 1, H//8, W//8, device=image1.device)
        # run the context network
        cnet = self.cnet(torch.cat([image1, image2], dim=1))
        cnet = self.init_conv(cnet)
        net, context = torch.split(cnet, [self.args.dim, self.args.dim], dim=1)

        # init flow
        flow_update = self.flow_head(net)
        weight_update = .25 * self.upsample_weight(net)
        flow_8x = flow_update[:, :2]
        info_8x = flow_update[:, 2:]
        flow_up, info_up = self.upsample_data(flow_8x, info_8x, weight_update)
        flow_predictions.append(flow_up)
        info_predictions.append(info_up)
            
        if self.args.iters > 0:
            # run the feature network
            fmap1_8x = self.fnet(image1)
            fmap2_8x = self.fnet(image2)
            corr_fn = CorrBlock2(fmap1_8x, fmap2_8x, self.args)

        for itr in range(iters):
            N, _, H, W = flow_8x.shape
            flow_8x = flow_8x.detach()
            coords2 = (coords_grid2(N, H, W, device=image1.device) + flow_8x).detach()
            corr = corr_fn(coords2, dilation=dilation)
            net = self.update_block(net, context, corr, flow_8x)
            flow_update = self.flow_head(net)
            weight_update = .25 * self.upsample_weight(net)
            flow_8x = flow_8x + flow_update[:, :2]
            info_8x = flow_update[:, 2:]
            # upsample predictions
            flow_up, info_up = self.upsample_data(flow_8x, info_8x, weight_update)
            flow_predictions.append(flow_up)
            info_predictions.append(info_up)

        for i in range(len(info_predictions)):
            flow_predictions[i] = padder.unpad(flow_predictions[i])
            info_predictions[i] = padder.unpad(info_predictions[i])

        if test_mode == False:
            # exlude invalid pixels and extremely large diplacements
            nf_predictions = []
            for i in range(len(info_predictions)):
                if not self.args.use_var:
                    var_max = var_min = 0
                else:
                    var_max = self.args.var_max
                    var_min = self.args.var_min
                    
                raw_b = info_predictions[i][:, 2:]
                log_b = torch.zeros_like(raw_b)
                weight = info_predictions[i][:, :2]
                # Large b Component                
                log_b[:, 0] = torch.clamp(raw_b[:, 0], min=0, max=var_max)
                # Small b Component
                log_b[:, 1] = torch.clamp(raw_b[:, 1], min=var_min, max=0)
                # term2: [N, 2, m, H, W]
                term2 = ((flow_gt - flow_predictions[i]).abs().unsqueeze(2)) * (torch.exp(-log_b).unsqueeze(1))
                # term1: [N, m, H, W]
                term1 = weight - math.log(2) - log_b
                nf_loss = torch.logsumexp(weight, dim=1, keepdim=True) - torch.logsumexp(term1.unsqueeze(1) - term2, dim=2)
                nf_predictions.append(nf_loss)

            return {'final': flow_predictions[-1], 'flow': flow_predictions, 'info': info_predictions, 'nf': nf_predictions}
        else:
            return [flow_predictions,flow_predictions[-1]]