File size: 10,315 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import glob
import json
import os

import numpy as np
import pandas as pd
import torch

from PIL import Image as PILImage

try:
    from pycocotools import mask as mask_utils
except:
    pass


class JSONSegmentLoader:
    def __init__(self, video_json_path, ann_every=1, frames_fps=24, valid_obj_ids=None):
        # Annotations in the json are provided every ann_every th frame
        self.ann_every = ann_every
        # Ids of the objects to consider when sampling this video
        self.valid_obj_ids = valid_obj_ids
        with open(video_json_path, "r") as f:
            data = json.load(f)
            if isinstance(data, list):
                self.frame_annots = data
            elif isinstance(data, dict):
                masklet_field_name = "masklet" if "masklet" in data else "masks"
                self.frame_annots = data[masklet_field_name]
                if "fps" in data:
                    if isinstance(data["fps"], list):
                        annotations_fps = int(data["fps"][0])
                    else:
                        annotations_fps = int(data["fps"])
                    assert frames_fps % annotations_fps == 0
                    self.ann_every = frames_fps // annotations_fps
            else:
                raise NotImplementedError

    def load(self, frame_id, obj_ids=None):
        assert frame_id % self.ann_every == 0
        rle_mask = self.frame_annots[frame_id // self.ann_every]

        valid_objs_ids = set(range(len(rle_mask)))
        if self.valid_obj_ids is not None:
            # Remove the masklets that have been filtered out for this video
            valid_objs_ids &= set(self.valid_obj_ids)
        if obj_ids is not None:
            # Only keep the objects that have been sampled
            valid_objs_ids &= set(obj_ids)
        valid_objs_ids = sorted(list(valid_objs_ids))

        # Construct rle_masks_filtered that only contains the rle masks we are interested in
        id_2_idx = {}
        rle_mask_filtered = []
        for obj_id in valid_objs_ids:
            if rle_mask[obj_id] is not None:
                id_2_idx[obj_id] = len(rle_mask_filtered)
                rle_mask_filtered.append(rle_mask[obj_id])
            else:
                id_2_idx[obj_id] = None

        # Decode the masks
        raw_segments = torch.from_numpy(mask_utils.decode(rle_mask_filtered)).permute(
            2, 0, 1
        )  # (num_obj, h, w)
        segments = {}
        for obj_id in valid_objs_ids:
            if id_2_idx[obj_id] is None:
                segments[obj_id] = None
            else:
                idx = id_2_idx[obj_id]
                segments[obj_id] = raw_segments[idx]
        return segments

    def get_valid_obj_frames_ids(self, num_frames_min=None):
        # For each object, find all the frames with a valid (not None) mask
        num_objects = len(self.frame_annots[0])

        # The result dict associates each obj_id with the id of its valid frames
        res = {obj_id: [] for obj_id in range(num_objects)}

        for annot_idx, annot in enumerate(self.frame_annots):
            for obj_id in range(num_objects):
                if annot[obj_id] is not None:
                    res[obj_id].append(int(annot_idx * self.ann_every))

        if num_frames_min is not None:
            # Remove masklets that have less than num_frames_min valid masks
            for obj_id, valid_frames in list(res.items()):
                if len(valid_frames) < num_frames_min:
                    res.pop(obj_id)

        return res


class PalettisedPNGSegmentLoader:
    def __init__(self, video_png_root):
        """
        SegmentLoader for datasets with masks stored as palettised PNGs.
        video_png_root: the folder contains all the masks stored in png
        """
        self.video_png_root = video_png_root
        # build a mapping from frame id to their PNG mask path
        # note that in some datasets, the PNG paths could have more
        # than 5 digits, e.g. "00000000.png" instead of "00000.png"
        png_filenames = os.listdir(self.video_png_root)
        self.frame_id_to_png_filename = {}
        for filename in png_filenames:
            frame_id, _ = os.path.splitext(filename)
            self.frame_id_to_png_filename[int(frame_id)] = filename

    def load(self, frame_id):
        """
        load the single palettised mask from the disk (path: f'{self.video_png_root}/{frame_id:05d}.png')
        Args:
            frame_id: int, define the mask path
        Return:
            binary_segments: dict
        """
        # check the path
        mask_path = os.path.join(
            self.video_png_root, self.frame_id_to_png_filename[frame_id]
        )

        # load the mask
        masks = PILImage.open(mask_path).convert("P")
        masks = np.array(masks)

        object_id = pd.unique(masks.flatten())
        object_id = object_id[object_id != 0]  # remove background (0)

        # convert into N binary segmentation masks
        binary_segments = {}
        for i in object_id:
            bs = masks == i
            binary_segments[i] = torch.from_numpy(bs)

        return binary_segments

    def __len__(self):
        return


class MultiplePNGSegmentLoader:
    def __init__(self, video_png_root, single_object_mode=False):
        """
        video_png_root: the folder contains all the masks stored in png
        single_object_mode: whether to load only a single object at a time
        """
        self.video_png_root = video_png_root
        self.single_object_mode = single_object_mode
        # read a mask to know the resolution of the video
        if self.single_object_mode:
            tmp_mask_path = glob.glob(os.path.join(video_png_root, "*.png"))[0]
        else:
            tmp_mask_path = glob.glob(os.path.join(video_png_root, "*", "*.png"))[0]
        tmp_mask = np.array(PILImage.open(tmp_mask_path))
        self.H = tmp_mask.shape[0]
        self.W = tmp_mask.shape[1]
        if self.single_object_mode:
            self.obj_id = (
                int(video_png_root.split("/")[-1]) + 1
            )  # offset by 1 as bg is 0
        else:
            self.obj_id = None

    def load(self, frame_id):
        if self.single_object_mode:
            return self._load_single_png(frame_id)
        else:
            return self._load_multiple_pngs(frame_id)

    def _load_single_png(self, frame_id):
        """
        load single png from the disk (path: f'{self.obj_id}/{frame_id:05d}.png')
        Args:
            frame_id: int, define the mask path
        Return:
            binary_segments: dict
        """
        mask_path = os.path.join(self.video_png_root, f"{frame_id:05d}.png")
        binary_segments = {}

        if os.path.exists(mask_path):
            mask = np.array(PILImage.open(mask_path))
        else:
            # if png doesn't exist, empty mask
            mask = np.zeros((self.H, self.W), dtype=bool)
        binary_segments[self.obj_id] = torch.from_numpy(mask > 0)
        return binary_segments

    def _load_multiple_pngs(self, frame_id):
        """
        load multiple png masks from the disk (path: f'{obj_id}/{frame_id:05d}.png')
        Args:
            frame_id: int, define the mask path
        Return:
            binary_segments: dict
        """
        # get the path
        all_objects = sorted(glob.glob(os.path.join(self.video_png_root, "*")))
        num_objects = len(all_objects)
        assert num_objects > 0

        # load the masks
        binary_segments = {}
        for obj_folder in all_objects:
            # obj_folder is {video_name}/{obj_id}, obj_id is specified by the name of the folder
            obj_id = int(obj_folder.split("/")[-1])
            obj_id = obj_id + 1  # offset 1 as bg is 0
            mask_path = os.path.join(obj_folder, f"{frame_id:05d}.png")
            if os.path.exists(mask_path):
                mask = np.array(PILImage.open(mask_path))
            else:
                mask = np.zeros((self.H, self.W), dtype=bool)
            binary_segments[obj_id] = torch.from_numpy(mask > 0)

        return binary_segments

    def __len__(self):
        return


class LazySegments:
    """
    Only decodes segments that are actually used.
    """

    def __init__(self):
        self.segments = {}
        self.cache = {}

    def __setitem__(self, key, item):
        self.segments[key] = item

    def __getitem__(self, key):
        if key in self.cache:
            return self.cache[key]
        rle = self.segments[key]
        mask = torch.from_numpy(mask_utils.decode([rle])).permute(2, 0, 1)[0]
        self.cache[key] = mask
        return mask

    def __contains__(self, key):
        return key in self.segments

    def __len__(self):
        return len(self.segments)

    def keys(self):
        return self.segments.keys()


class SA1BSegmentLoader:
    def __init__(
        self,
        video_mask_path,
        mask_area_frac_thresh=1.1,
        video_frame_path=None,
        uncertain_iou=-1,
    ):
        with open(video_mask_path, "r") as f:
            self.frame_annots = json.load(f)

        if mask_area_frac_thresh <= 1.0:
            # Lazily read frame
            orig_w, orig_h = PILImage.open(video_frame_path).size
            area = orig_w * orig_h

        self.frame_annots = self.frame_annots["annotations"]

        rle_masks = []
        for frame_annot in self.frame_annots:
            if not frame_annot["area"] > 0:
                continue
            if ("uncertain_iou" in frame_annot) and (
                frame_annot["uncertain_iou"] < uncertain_iou
            ):
                # uncertain_iou is stability score
                continue
            if (
                mask_area_frac_thresh <= 1.0
                and (frame_annot["area"] / area) >= mask_area_frac_thresh
            ):
                continue
            rle_masks.append(frame_annot["segmentation"])

        self.segments = LazySegments()
        for i, rle in enumerate(rle_masks):
            self.segments[i] = rle

    def load(self, frame_idx):
        return self.segments