File size: 8,806 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import os
import random
import re
from datetime import timedelta
from typing import Optional
import hydra
import numpy as np
import omegaconf
import torch
import torch.distributed as dist
from iopath.common.file_io import g_pathmgr
from omegaconf import OmegaConf
def multiply_all(*args):
return np.prod(np.array(args)).item()
def collect_dict_keys(config):
"""This function recursively iterates through a dataset configuration, and collect all the dict_key that are defined"""
val_keys = []
# If the this config points to the collate function, then it has a key
if "_target_" in config and re.match(r".*collate_fn.*", config["_target_"]):
val_keys.append(config["dict_key"])
else:
# Recursively proceed
for v in config.values():
if isinstance(v, type(config)):
val_keys.extend(collect_dict_keys(v))
elif isinstance(v, omegaconf.listconfig.ListConfig):
for item in v:
if isinstance(item, type(config)):
val_keys.extend(collect_dict_keys(item))
return val_keys
class Phase:
TRAIN = "train"
VAL = "val"
def register_omegaconf_resolvers():
OmegaConf.register_new_resolver("get_method", hydra.utils.get_method)
OmegaConf.register_new_resolver("get_class", hydra.utils.get_class)
OmegaConf.register_new_resolver("add", lambda x, y: x + y)
OmegaConf.register_new_resolver("times", multiply_all)
OmegaConf.register_new_resolver("divide", lambda x, y: x / y)
OmegaConf.register_new_resolver("pow", lambda x, y: x**y)
OmegaConf.register_new_resolver("subtract", lambda x, y: x - y)
OmegaConf.register_new_resolver("range", lambda x: list(range(x)))
OmegaConf.register_new_resolver("int", lambda x: int(x))
OmegaConf.register_new_resolver("ceil_int", lambda x: int(math.ceil(x)))
OmegaConf.register_new_resolver("merge", lambda *x: OmegaConf.merge(*x))
def setup_distributed_backend(backend, timeout_mins):
"""
Initialize torch.distributed and set the CUDA device.
Expects environment variables to be set as per
https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization
along with the environ variable "LOCAL_RANK" which is used to set the CUDA device.
"""
# enable TORCH_NCCL_ASYNC_ERROR_HANDLING to ensure dist nccl ops time out after timeout_mins
# of waiting
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
logging.info(f"Setting up torch.distributed with a timeout of {timeout_mins} mins")
dist.init_process_group(backend=backend, timeout=timedelta(minutes=timeout_mins))
return dist.get_rank()
def get_machine_local_and_dist_rank():
"""
Get the distributed and local rank of the current gpu.
"""
local_rank = int(os.environ.get("LOCAL_RANK", None))
distributed_rank = int(os.environ.get("RANK", None))
assert (
local_rank is not None and distributed_rank is not None
), "Please the set the RANK and LOCAL_RANK environment variables."
return local_rank, distributed_rank
def print_cfg(cfg):
"""
Supports printing both Hydra DictConfig and also the AttrDict config
"""
logging.info("Training with config:")
logging.info(OmegaConf.to_yaml(cfg))
def set_seeds(seed_value, max_epochs, dist_rank):
"""
Set the python random, numpy and torch seed for each gpu. Also set the CUDA
seeds if the CUDA is available. This ensures deterministic nature of the training.
"""
# Since in the pytorch sampler, we increment the seed by 1 for every epoch.
seed_value = (seed_value + dist_rank) * max_epochs
logging.info(f"MACHINE SEED: {seed_value}")
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed_value)
def makedir(dir_path):
"""
Create the directory if it does not exist.
"""
is_success = False
try:
if not g_pathmgr.exists(dir_path):
g_pathmgr.mkdirs(dir_path)
is_success = True
except BaseException:
logging.info(f"Error creating directory: {dir_path}")
return is_success
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_amp_type(amp_type: Optional[str] = None):
if amp_type is None:
return None
assert amp_type in ["bfloat16", "float16"], "Invalid Amp type."
if amp_type == "bfloat16":
return torch.bfloat16
else:
return torch.float16
def log_env_variables():
env_keys = sorted(list(os.environ.keys()))
st = ""
for k in env_keys:
v = os.environ[k]
st += f"{k}={v}\n"
logging.info("Logging ENV_VARIABLES")
logging.info(st)
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self, name, device, fmt=":f"):
self.name = name
self.fmt = fmt
self.device = device
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self._allow_updates = True
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name}: {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class MemMeter:
"""Computes and stores the current, avg, and max of peak Mem usage per iteration"""
def __init__(self, name, device, fmt=":f"):
self.name = name
self.fmt = fmt
self.device = device
self.reset()
def reset(self):
self.val = 0 # Per iteration max usage
self.avg = 0 # Avg per iteration max usage
self.peak = 0 # Peak usage for lifetime of program
self.sum = 0
self.count = 0
self._allow_updates = True
def update(self, n=1, reset_peak_usage=True):
self.val = torch.cuda.max_memory_allocated() // 1e9
self.sum += self.val * n
self.count += n
self.avg = self.sum / self.count
self.peak = max(self.peak, self.val)
if reset_peak_usage:
torch.cuda.reset_peak_memory_stats()
def __str__(self):
fmtstr = (
"{name}: {val"
+ self.fmt
+ "} ({avg"
+ self.fmt
+ "}/{peak"
+ self.fmt
+ "})"
)
return fmtstr.format(**self.__dict__)
def human_readable_time(time_seconds):
time = int(time_seconds)
minutes, seconds = divmod(time, 60)
hours, minutes = divmod(minutes, 60)
days, hours = divmod(hours, 24)
return f"{days:02}d {hours:02}h {minutes:02}m"
class DurationMeter:
def __init__(self, name, device, fmt=":f"):
self.name = name
self.device = device
self.fmt = fmt
self.val = 0
def reset(self):
self.val = 0
def update(self, val):
self.val = val
def add(self, val):
self.val += val
def __str__(self):
return f"{self.name}: {human_readable_time(self.val)}"
class ProgressMeter:
def __init__(self, num_batches, meters, real_meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.real_meters = real_meters
self.prefix = prefix
def display(self, batch, enable_print=False):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
entries += [
" | ".join(
[
f"{os.path.join(name, subname)}: {val:.4f}"
for subname, val in meter.compute().items()
]
)
for name, meter in self.real_meters.items()
]
logging.info(" | ".join(entries))
if enable_print:
print(" | ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def get_resume_checkpoint(checkpoint_save_dir):
if not g_pathmgr.isdir(checkpoint_save_dir):
return None
ckpt_file = os.path.join(checkpoint_save_dir, "checkpoint.pt")
if not g_pathmgr.isfile(ckpt_file):
return None
return ckpt_file
|