|
|
|
|
|
|
|
|
|
|
|
|
|
import PIL |
|
import numpy as np |
|
import torch |
|
|
|
from dust3r.datasets.base.easy_dataset import EasyDataset |
|
from dust3r.datasets.utils.transforms import ImgNorm |
|
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates |
|
import dust3r.datasets.utils.cropping as cropping |
|
|
|
|
|
class BaseStereoViewDataset(EasyDataset): |
|
""" Define all basic options. |
|
|
|
Usage: |
|
class MyDataset (BaseStereoViewDataset): |
|
def _get_views(self, idx, rng): |
|
# overload here |
|
views = [] |
|
views.append(dict(img=, ...)) |
|
return views |
|
""" |
|
|
|
def __init__(self, *, |
|
split=None, |
|
resolution=None, |
|
transform=ImgNorm, |
|
aug_crop=False, |
|
aug_f=False, |
|
seed=None, |
|
depth_prior_name='depthpro'): |
|
self.num_views = 2 |
|
self.split = split |
|
self.depth_prior_name = depth_prior_name |
|
self._set_resolutions(resolution) |
|
self.aug_f = aug_f |
|
self.transform = transform |
|
if isinstance(transform, str): |
|
transform = eval(transform) |
|
|
|
self.aug_crop = aug_crop |
|
self.seed = seed |
|
|
|
def __len__(self): |
|
return len(self.scenes) |
|
|
|
def get_stats(self): |
|
return f"{len(self)} pairs" |
|
|
|
def __repr__(self): |
|
resolutions_str = '['+';'.join(f'{w}x{h}' for w, h in self._resolutions)+']' |
|
return f"""{type(self).__name__}({self.get_stats()}, |
|
{self.split=}, |
|
{self.seed=}, |
|
resolutions={resolutions_str}, |
|
{self.transform=})""".replace('self.', '').replace('\n', '').replace(' ', '') |
|
|
|
def _get_views(self, idx, resolution, rng): |
|
raise NotImplementedError() |
|
|
|
def pixel_to_pointcloud(self, depth_map, focal_length_px): |
|
""" |
|
Convert a depth map to a 3D point cloud. |
|
|
|
Args: |
|
depth_map (numpy.ndarray): The input depth map with shape (H, W), where each value represents the depth at that pixel. |
|
focal_length_px (float): The focal length of the camera in pixels. |
|
|
|
Returns: |
|
numpy.ndarray: The resulting point cloud with shape (H, W, 3), where each point is represented by (X, Y, Z). |
|
""" |
|
height, width = depth_map.shape |
|
cx = width / 2 |
|
cy = height / 2 |
|
|
|
|
|
u = np.arange(width) |
|
v = np.arange(height) |
|
u, v = np.meshgrid(u, v) |
|
|
|
|
|
Z = depth_map |
|
X = (u - cx) * Z / focal_length_px |
|
Y = (v - cy) * Z / focal_length_px |
|
|
|
|
|
point_cloud = np.dstack((X, Y, Z)).astype(np.float32) |
|
point_cloud = self.normalize_pointcloud(point_cloud) |
|
|
|
|
|
|
|
return point_cloud |
|
|
|
def normalize_pointcloud(self, point_cloud): |
|
min_vals = np.min(point_cloud, axis=(0, 1)) |
|
max_vals = np.max(point_cloud, axis=(0, 1)) |
|
|
|
normalized_point_cloud = (point_cloud - min_vals) / (max_vals - min_vals) |
|
return normalized_point_cloud |
|
|
|
def __getitem__(self, idx): |
|
if isinstance(idx, tuple): |
|
|
|
idx, ar_idx = idx |
|
else: |
|
assert len(self._resolutions) == 1 |
|
ar_idx = 0 |
|
|
|
|
|
if self.seed: |
|
self._rng = np.random.default_rng(seed=self.seed + idx) |
|
elif not hasattr(self, '_rng'): |
|
seed = torch.initial_seed() |
|
self._rng = np.random.default_rng(seed=seed) |
|
|
|
|
|
resolution = self._resolutions[ar_idx] |
|
|
|
views = self._get_views(idx, resolution, self._rng) |
|
assert len(views) == self.num_views |
|
|
|
|
|
for v, view in enumerate(views): |
|
assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" |
|
view['idx'] = (idx, ar_idx, v) |
|
|
|
|
|
width, height = view['img'].size |
|
view['true_shape'] = np.int32((height, width)) |
|
view['img'] = self.transform(view['img']) |
|
|
|
assert 'camera_intrinsics' in view |
|
if 'camera_pose' not in view: |
|
view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) |
|
else: |
|
assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' |
|
assert 'pts3d' not in view |
|
assert 'valid_mask' not in view |
|
assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' |
|
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) |
|
|
|
view['pts3d'] = pts3d |
|
view['valid_mask'] = valid_mask & (np.isfinite(pts3d).all(axis=-1))[..., None] |
|
|
|
|
|
for key, val in view.items(): |
|
res, err_msg = is_good_type(key, val) |
|
assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" |
|
K = view['camera_intrinsics'] |
|
|
|
|
|
for view in views: |
|
|
|
transpose_to_landscape(view) |
|
|
|
view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') |
|
return views |
|
|
|
def _set_resolutions(self, resolutions): |
|
assert resolutions is not None, 'undefined resolution' |
|
|
|
if not isinstance(resolutions, list): |
|
resolutions = [resolutions] |
|
|
|
self._resolutions = [] |
|
for resolution in resolutions: |
|
if isinstance(resolution, int): |
|
width = height = resolution |
|
else: |
|
width, height = resolution |
|
assert isinstance(width, int), f'Bad type for {width=} {type(width)=}, should be int' |
|
assert isinstance(height, int), f'Bad type for {height=} {type(height)=}, should be int' |
|
assert width >= height |
|
self._resolutions.append((width, height)) |
|
|
|
def _crop_resize_if_necessary(self, image, depthmap, pred_depth, intrinsics, resolution, rng=None, info=None): |
|
""" This function: |
|
- first downsizes the image with LANCZOS inteprolation, |
|
which is better than bilinear interpolation in |
|
""" |
|
if not isinstance(image, PIL.Image.Image): |
|
image = PIL.Image.fromarray(image) |
|
|
|
|
|
|
|
W, H = image.size |
|
cx, cy = intrinsics[:2, 2].round().astype(int) |
|
|
|
min_margin_x = min(cx, W-cx) |
|
min_margin_y = min(cy, H-cy) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l, t = cx - min_margin_x, cy - min_margin_y |
|
r, b = cx + min_margin_x, cy + min_margin_y |
|
crop_bbox = (l, t, r, b) |
|
|
|
|
|
image, depthmap, pred_depth, intrinsics = cropping.crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_bbox) |
|
|
|
|
|
W, H = image.size |
|
assert resolution[0] >= resolution[1] |
|
if H > 1.1*W: |
|
|
|
resolution = resolution[::-1] |
|
elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]: |
|
|
|
if rng.integers(2): |
|
resolution = resolution[::-1] |
|
|
|
|
|
target_resolution = np.array(resolution) |
|
if self.aug_f: |
|
crop_scale = rng.choice([0.8, 0.9, 1.0], size=1, replace=False)[0] |
|
|
|
image, depthmap, pred_depth, intrinsics = cropping.center_crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_scale) |
|
|
|
if self.aug_crop > 1: |
|
target_resolution += rng.integers(0, self.aug_crop) |
|
image, depthmap, pred_depth, intrinsics = cropping.rescale_image_depthmap(image, depthmap, pred_depth, intrinsics, target_resolution) |
|
|
|
|
|
intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5) |
|
crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) |
|
image, depthmap, pred_depth, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, pred_depth, intrinsics, crop_bbox) |
|
|
|
return image, depthmap, pred_depth, intrinsics2 |
|
|
|
|
|
def is_good_type(key, v): |
|
""" returns (is_good, err_msg) |
|
""" |
|
if isinstance(v, (str, int, tuple)): |
|
return True, None |
|
if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8): |
|
return False, f"bad {v.dtype=}" |
|
return True, None |
|
|
|
|
|
def view_name(view, batch_index=None): |
|
def sel(x): return x[batch_index] if batch_index not in (None, slice(None)) else x |
|
db = sel(view['dataset']) |
|
label = sel(view['label']) |
|
instance = sel(view['instance']) |
|
return f"{db}/{label}/{instance}" |
|
|
|
|
|
def transpose_to_landscape(view): |
|
height, width = view['true_shape'] |
|
|
|
if width < height: |
|
|
|
assert view['img'].shape == (3, height, width) |
|
view['img'] = view['img'].swapaxes(1, 2) |
|
|
|
assert view['valid_mask'].shape == (height, width) |
|
view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) |
|
|
|
assert view['depthmap'].shape == (height, width) |
|
view['depthmap'] = view['depthmap'].swapaxes(0, 1) |
|
|
|
assert view['pts3d'].shape == (height, width, 3) |
|
view['pts3d'] = view['pts3d'].swapaxes(0, 1) |
|
|
|
assert view['pred_depth'].shape == (height, width) |
|
view['pred_depth'] = view['pred_depth'].swapaxes(0, 1) |
|
|
|
view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] |
|
|