|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os.path as osp |
|
import numpy as np |
|
|
|
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset |
|
from dust3r.utils.image import imread_cv2 |
|
|
|
|
|
class Waymo (BaseStereoViewDataset): |
|
""" Dataset of outdoor street scenes, 5 images each time |
|
""" |
|
|
|
def __init__(self, *args, ROOT, **kwargs): |
|
self.ROOT = ROOT |
|
super().__init__(*args, **kwargs) |
|
self._load_data() |
|
|
|
def _load_data(self): |
|
with np.load(osp.join(self.ROOT, 'waymo_pairs.npz')) as data: |
|
self.scenes = data['scenes'] |
|
self.frames = data['frames'] |
|
self.inv_frames = {frame: i for i, frame in enumerate(data['frames'])} |
|
self.pairs = data['pairs'] |
|
assert self.pairs[:, 0].max() == len(self.scenes) - 1 |
|
|
|
def __len__(self): |
|
return len(self.pairs) |
|
|
|
def get_stats(self): |
|
return f'{len(self)} pairs from {len(self.scenes)} scenes' |
|
|
|
def _get_views(self, pair_idx, resolution, rng): |
|
seq, img1, img2 = self.pairs[pair_idx] |
|
seq_path = osp.join(self.ROOT, self.scenes[seq]) |
|
|
|
views = [] |
|
|
|
for view_index in [img1, img2]: |
|
impath = self.frames[view_index] |
|
image = imread_cv2(osp.join(seq_path, impath + ".jpg")) |
|
depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) |
|
camera_params = np.load(osp.join(seq_path, impath + ".npz")) |
|
|
|
intrinsics = np.float32(camera_params['intrinsics']) |
|
camera_pose = np.float32(camera_params['cam2world']) |
|
|
|
image, depthmap, intrinsics = self._crop_resize_if_necessary( |
|
image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath)) |
|
|
|
views.append(dict( |
|
img=image, |
|
depthmap=depthmap, |
|
camera_pose=camera_pose, |
|
camera_intrinsics=intrinsics, |
|
dataset='Waymo', |
|
label=osp.relpath(seq_path, self.ROOT), |
|
instance=impath)) |
|
|
|
return views |
|
|
|
|
|
if __name__ == '__main__': |
|
from dust3r.datasets.base.base_stereo_view_dataset import view_name |
|
from dust3r.viz import SceneViz, auto_cam_size |
|
from dust3r.utils.image import rgb |
|
|
|
dataset = Waymo(split='train', ROOT="data/megadepth_processed", resolution=224, aug_crop=16) |
|
|
|
for idx in np.random.permutation(len(dataset)): |
|
views = dataset[idx] |
|
assert len(views) == 2 |
|
print(idx, view_name(views[0]), view_name(views[1])) |
|
viz = SceneViz() |
|
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] |
|
cam_size = max(auto_cam_size(poses), 0.001) |
|
for view_idx in [0, 1]: |
|
pts3d = views[view_idx]['pts3d'] |
|
valid_mask = views[view_idx]['valid_mask'] |
|
colors = rgb(views[view_idx]['img']) |
|
viz.add_pointcloud(pts3d, colors, valid_mask) |
|
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], |
|
focal=views[view_idx]['camera_intrinsics'][0, 0], |
|
color=(idx * 255, (1 - idx) * 255, 0), |
|
image=colors, |
|
cam_size=cam_size) |
|
viz.show() |
|
|