|
|
|
|
|
|
|
|
|
|
|
|
|
from copy import deepcopy |
|
import torch |
|
import os |
|
from packaging import version |
|
import huggingface_hub |
|
import torch.nn as nn |
|
from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape |
|
from .heads import head_factory |
|
from dust3r.patch_embed import get_patch_embed |
|
|
|
import dust3r.utils.path_to_croco |
|
from models.croco import CroCoNet |
|
|
|
inf = float('inf') |
|
|
|
hf_version_number = huggingface_hub.__version__ |
|
assert version.parse(hf_version_number) >= version.parse("0.22.0"), ("Outdated huggingface_hub version, " |
|
"please reinstall requirements.txt") |
|
|
|
|
|
def load_model(model_path, device, verbose=True): |
|
if verbose: |
|
print('... loading model from', model_path) |
|
ckpt = torch.load(model_path, map_location='cpu') |
|
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") |
|
if 'landscape_only' not in args: |
|
args = args[:-1] + ', landscape_only=False)' |
|
else: |
|
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False') |
|
assert "landscape_only=False" in args |
|
if verbose: |
|
print(f"instantiating : {args}") |
|
net = eval(args) |
|
s = net.load_state_dict(ckpt['model'], strict=False) |
|
if verbose: |
|
print(s) |
|
return net.to(device) |
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
class AsymmetricCroCo3DStereo ( |
|
CroCoNet, |
|
huggingface_hub.PyTorchModelHubMixin, |
|
library_name="align3r", |
|
repo_url="https://github.com/jiah-cloud/Align3R", |
|
tags=["image-to-3d"], |
|
): |
|
""" Two siamese encoders, followed by two decoders. |
|
The goal is to output 3d points directly, both images in view1's frame |
|
(hence the asymmetry). |
|
""" |
|
|
|
def __init__(self, |
|
output_mode='pts3d', |
|
head_type='linear', |
|
depth_mode=('exp', -inf, inf), |
|
conf_mode=('exp', 1, inf), |
|
freeze='none', |
|
landscape_only=True, |
|
patch_embed_cls='PatchEmbedDust3R', |
|
**croco_kwargs): |
|
self.patch_embed_cls = patch_embed_cls |
|
self.croco_args = fill_default_args(croco_kwargs, super().__init__) |
|
super().__init__(**croco_kwargs) |
|
|
|
|
|
self.dec_blocks2 = deepcopy(self.dec_blocks) |
|
self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs) |
|
self.set_freeze(freeze) |
|
self.zero_convs = [] |
|
for i in range(len(self.dec_blocks_pc) + 1): |
|
self.zero_convs.append(self.make_zero_conv(self.dec_embed_dim).cuda()) |
|
self.zero_convs = nn.ModuleList(self.zero_convs) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kw): |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
return load_model(pretrained_model_name_or_path, device='cpu') |
|
else: |
|
try: |
|
model = super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw) |
|
except TypeError as e: |
|
raise Exception(f'tried to load {pretrained_model_name_or_path} from huggingface, but failed') |
|
return model |
|
|
|
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): |
|
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim) |
|
self.patch_embed_point_cloud = get_patch_embed(self.patch_embed_cls, img_size, patch_size, self.dec_embed_dim) |
|
|
|
def load_state_dict(self, ckpt, **kw): |
|
|
|
new_ckpt = dict(ckpt) |
|
if not any(k.startswith('dec_blocks2') for k in ckpt): |
|
for key, value in ckpt.items(): |
|
if key.startswith('dec_blocks'): |
|
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value |
|
return super().load_state_dict(new_ckpt, **kw) |
|
|
|
def set_freeze(self, freeze): |
|
self.freeze = freeze |
|
to_be_frozen = { |
|
'none': [], |
|
'mask': [self.mask_token], |
|
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], |
|
} |
|
freeze_all_params(to_be_frozen[freeze]) |
|
|
|
def _set_prediction_head(self, *args, **kwargs): |
|
""" No prediction head """ |
|
return |
|
|
|
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, |
|
**kw): |
|
assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \ |
|
f'{img_size=} must be multiple of {patch_size=}' |
|
self.output_mode = output_mode |
|
self.head_type = head_type |
|
self.depth_mode = depth_mode |
|
self.conf_mode = conf_mode |
|
|
|
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) |
|
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) |
|
|
|
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only) |
|
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only) |
|
|
|
def _encode_image(self, image, true_shape): |
|
|
|
x, pos = self.patch_embed(image, true_shape=true_shape) |
|
|
|
|
|
assert self.enc_pos_embed is None |
|
|
|
|
|
for blk in self.enc_blocks: |
|
x = blk(x, pos) |
|
|
|
x = self.enc_norm(x) |
|
return x, pos, None |
|
|
|
def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2): |
|
if img1.shape[-2:] == img2.shape[-2:]: |
|
out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), |
|
torch.cat((true_shape1, true_shape2), dim=0)) |
|
out, out2 = out.chunk(2, dim=0) |
|
pos, pos2 = pos.chunk(2, dim=0) |
|
else: |
|
out, pos, _ = self._encode_image(img1, true_shape1) |
|
out2, pos2, _ = self._encode_image(img2, true_shape2) |
|
return out, out2, pos, pos2 |
|
|
|
def _encode_symmetrized(self, view1, view2): |
|
img1 = view1['img'] |
|
img2 = view2['img'] |
|
B = img1.shape[0] |
|
|
|
|
|
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1)) |
|
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) |
|
|
|
|
|
|
|
|
|
if is_symmetrized(view1, view2): |
|
|
|
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2]) |
|
feat1, feat2 = interleave(feat1, feat2) |
|
pos1, pos2 = interleave(pos1, pos2) |
|
else: |
|
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2) |
|
|
|
return (shape1, shape2), (feat1, feat2), (pos1, pos2) |
|
|
|
def make_zero_conv(self, channels): |
|
return nn.Sequential(zero_module(conv_nd(1, channels, channels, 1, padding=0))) |
|
|
|
def _decoder(self, f1, pos1, f2, pos2, point_cloud, point_cloud_pos): |
|
final_output = [(f1, f2)] |
|
|
|
|
|
f1 = self.decoder_embed(f1) |
|
f2 = self.decoder_embed(f2) |
|
|
|
|
|
f1 = f1 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[0].transpose(-1,-2)).transpose(-1,-2) |
|
f2 = f2 + self.zero_convs[0](point_cloud.chunk(2, dim=0)[1].transpose(-1,-2)).transpose(-1,-2) |
|
|
|
final_output.append((f1, f2)) |
|
|
|
for i in range(len(self.dec_blocks)): |
|
blk1 = self.dec_blocks[i] |
|
blk2 = self.dec_blocks2[i] |
|
|
|
f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) |
|
|
|
f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) |
|
|
|
|
|
if i <len(self.dec_blocks_pc): |
|
point_cloud = self.dec_blocks_pc[i](point_cloud, point_cloud_pos) |
|
f1 = f1 + self.zero_convs[i+1](point_cloud.chunk(2, dim=0)[0].transpose(-1,-2)).transpose(-1,-2) |
|
f2 = f2 + self.zero_convs[i+1](point_cloud.chunk(2, dim=0)[1].transpose(-1,-2)).transpose(-1,-2) |
|
|
|
final_output.append((f1, f2)) |
|
|
|
|
|
del final_output[1] |
|
final_output[-1] = tuple(map(self.dec_norm, final_output[-1])) |
|
return zip(*final_output) |
|
|
|
def _downstream_head(self, head_num, decout, img_shape): |
|
B, S, D = decout[-1].shape |
|
|
|
head = getattr(self, f'head{head_num}') |
|
return head(decout, img_shape) |
|
|
|
def forward(self, view1, view2): |
|
|
|
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2) |
|
point_cloud1 = view1['pred_depth'].permute(0,3,1,2) |
|
point_cloud2 = view2['pred_depth'].permute(0,3,1,2) |
|
|
|
|
|
point_cloud, point_cloud_pos = self.patch_embed_point_cloud(torch.cat((point_cloud1, point_cloud2), dim=0), true_shape=torch.cat((shape1, shape2), dim=0)) |
|
|
|
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2, point_cloud, point_cloud_pos) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) |
|
res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2) |
|
|
|
res2['pts3d_in_other_view'] = res2.pop('pts3d') |
|
return res1, res2 |
|
|