|
from __future__ import print_function, division |
|
import sys |
|
sys.path.append('core') |
|
|
|
import argparse |
|
import os |
|
import cv2 |
|
import time |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
|
|
from torch.utils.data import DataLoader |
|
from raft import RAFT |
|
import evaluate |
|
import datasets |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
try: |
|
from torch.cuda.amp import GradScaler |
|
except: |
|
|
|
class GradScaler: |
|
def __init__(self): |
|
pass |
|
def scale(self, loss): |
|
return loss |
|
def unscale_(self, optimizer): |
|
pass |
|
def step(self, optimizer): |
|
optimizer.step() |
|
def update(self): |
|
pass |
|
|
|
|
|
|
|
MAX_FLOW = 400 |
|
SUM_FREQ = 100 |
|
VAL_FREQ = 5000 |
|
|
|
|
|
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW): |
|
""" Loss function defined over sequence of flow predictions """ |
|
|
|
n_predictions = len(flow_preds) |
|
flow_loss = 0.0 |
|
|
|
|
|
mag = torch.sum(flow_gt**2, dim=1).sqrt() |
|
valid = (valid >= 0.5) & (mag < max_flow) |
|
|
|
for i in range(n_predictions): |
|
i_weight = gamma**(n_predictions - i - 1) |
|
i_loss = (flow_preds[i] - flow_gt).abs() |
|
flow_loss += i_weight * (valid[:, None] * i_loss).mean() |
|
|
|
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt() |
|
epe = epe.view(-1)[valid.view(-1)] |
|
|
|
metrics = { |
|
'epe': epe.mean().item(), |
|
'1px': (epe < 1).float().mean().item(), |
|
'3px': (epe < 3).float().mean().item(), |
|
'5px': (epe < 5).float().mean().item(), |
|
} |
|
|
|
return flow_loss, metrics |
|
|
|
|
|
def count_parameters(model): |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
def fetch_optimizer(args, model): |
|
""" Create the optimizer and learning rate scheduler """ |
|
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) |
|
|
|
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, |
|
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') |
|
|
|
return optimizer, scheduler |
|
|
|
|
|
class Logger: |
|
def __init__(self, model, scheduler): |
|
self.model = model |
|
self.scheduler = scheduler |
|
self.total_steps = 0 |
|
self.running_loss = {} |
|
self.writer = None |
|
|
|
def _print_training_status(self): |
|
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] |
|
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) |
|
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) |
|
|
|
|
|
print(training_str + metrics_str) |
|
|
|
if self.writer is None: |
|
self.writer = SummaryWriter() |
|
|
|
for k in self.running_loss: |
|
self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) |
|
self.running_loss[k] = 0.0 |
|
|
|
def push(self, metrics): |
|
self.total_steps += 1 |
|
|
|
for key in metrics: |
|
if key not in self.running_loss: |
|
self.running_loss[key] = 0.0 |
|
|
|
self.running_loss[key] += metrics[key] |
|
|
|
if self.total_steps % SUM_FREQ == SUM_FREQ-1: |
|
self._print_training_status() |
|
self.running_loss = {} |
|
|
|
def write_dict(self, results): |
|
if self.writer is None: |
|
self.writer = SummaryWriter() |
|
|
|
for key in results: |
|
self.writer.add_scalar(key, results[key], self.total_steps) |
|
|
|
def close(self): |
|
self.writer.close() |
|
|
|
|
|
def train(args): |
|
|
|
model = nn.DataParallel(RAFT(args), device_ids=args.gpus) |
|
print("Parameter Count: %d" % count_parameters(model)) |
|
|
|
if args.restore_ckpt is not None: |
|
model.load_state_dict(torch.load(args.restore_ckpt), strict=False) |
|
|
|
model.cuda() |
|
model.train() |
|
|
|
if args.stage != 'chairs': |
|
model.module.freeze_bn() |
|
|
|
train_loader = datasets.fetch_dataloader(args) |
|
optimizer, scheduler = fetch_optimizer(args, model) |
|
|
|
total_steps = 0 |
|
scaler = GradScaler(enabled=args.mixed_precision) |
|
logger = Logger(model, scheduler) |
|
|
|
VAL_FREQ = 5000 |
|
add_noise = True |
|
|
|
should_keep_training = True |
|
while should_keep_training: |
|
|
|
for i_batch, data_blob in enumerate(train_loader): |
|
optimizer.zero_grad() |
|
image1, image2, flow, valid = [x.cuda() for x in data_blob] |
|
|
|
if args.add_noise: |
|
stdv = np.random.uniform(0.0, 5.0) |
|
image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0) |
|
image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0) |
|
|
|
flow_predictions = model(image1, image2, iters=args.iters) |
|
|
|
loss, metrics = sequence_loss(flow_predictions, flow, valid, args.gamma) |
|
scaler.scale(loss).backward() |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) |
|
|
|
scaler.step(optimizer) |
|
scheduler.step() |
|
scaler.update() |
|
|
|
logger.push(metrics) |
|
|
|
if total_steps % VAL_FREQ == VAL_FREQ - 1: |
|
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name) |
|
torch.save(model.state_dict(), PATH) |
|
|
|
results = {} |
|
for val_dataset in args.validation: |
|
if val_dataset == 'chairs': |
|
results.update(evaluate.validate_chairs(model.module)) |
|
elif val_dataset == 'sintel': |
|
results.update(evaluate.validate_sintel(model.module)) |
|
elif val_dataset == 'kitti': |
|
results.update(evaluate.validate_kitti(model.module)) |
|
|
|
logger.write_dict(results) |
|
|
|
model.train() |
|
if args.stage != 'chairs': |
|
model.module.freeze_bn() |
|
|
|
total_steps += 1 |
|
|
|
if total_steps > args.num_steps: |
|
should_keep_training = False |
|
break |
|
|
|
logger.close() |
|
PATH = 'checkpoints/%s.pth' % args.name |
|
torch.save(model.state_dict(), PATH) |
|
|
|
return PATH |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--name', default='raft', help="name your experiment") |
|
parser.add_argument('--stage', help="determines which dataset to use for training") |
|
parser.add_argument('--restore_ckpt', help="restore checkpoint") |
|
parser.add_argument('--small', action='store_true', help='use small model') |
|
parser.add_argument('--validation', type=str, nargs='+') |
|
|
|
parser.add_argument('--lr', type=float, default=0.00002) |
|
parser.add_argument('--num_steps', type=int, default=100000) |
|
parser.add_argument('--batch_size', type=int, default=6) |
|
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512]) |
|
parser.add_argument('--gpus', type=int, nargs='+', default=[0,1]) |
|
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') |
|
|
|
parser.add_argument('--iters', type=int, default=12) |
|
parser.add_argument('--wdecay', type=float, default=.00005) |
|
parser.add_argument('--epsilon', type=float, default=1e-8) |
|
parser.add_argument('--clip', type=float, default=1.0) |
|
parser.add_argument('--dropout', type=float, default=0.0) |
|
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting') |
|
parser.add_argument('--add_noise', action='store_true') |
|
args = parser.parse_args() |
|
|
|
torch.manual_seed(1234) |
|
np.random.seed(1234) |
|
|
|
if not os.path.isdir('checkpoints'): |
|
os.mkdir('checkpoints') |
|
|
|
train(args) |