|
|
|
|
|
|
|
|
|
|
|
|
|
import fnmatch |
|
import inspect |
|
import itertools |
|
import logging |
|
import types |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Iterable, |
|
List, |
|
Mapping, |
|
Optional, |
|
Set, |
|
Tuple, |
|
Type, |
|
Union, |
|
) |
|
|
|
import hydra |
|
|
|
import torch |
|
import torch.nn as nn |
|
from omegaconf import DictConfig |
|
from torch import Tensor |
|
|
|
|
|
class Optimizer: |
|
def __init__(self, optimizer, schedulers=None) -> None: |
|
self.optimizer = optimizer |
|
self.schedulers = schedulers |
|
self._validate_optimizer_schedulers() |
|
self.step_schedulers(0.0, 0) |
|
|
|
def _validate_optimizer_schedulers(self): |
|
if self.schedulers is None: |
|
return |
|
for _, set_of_schedulers in enumerate(self.schedulers): |
|
for option, _ in set_of_schedulers.items(): |
|
assert option in self.optimizer.defaults, ( |
|
"Optimizer option " |
|
f"{option} not found in {self.optimizer}. Valid options are " |
|
f"{self.optimizer.defaults.keys()}" |
|
) |
|
|
|
def step_schedulers(self, where: float, step: int) -> None: |
|
if self.schedulers is None: |
|
return |
|
for i, param_group in enumerate(self.optimizer.param_groups): |
|
for option, scheduler in self.schedulers[i].items(): |
|
if "step" in inspect.signature(scheduler.__call__).parameters: |
|
new_value = scheduler(step=step, where=where) |
|
elif ( |
|
hasattr(scheduler, "scheduler") |
|
and "step" |
|
in inspect.signature(scheduler.scheduler.__call__).parameters |
|
): |
|
|
|
new_value = scheduler(step=step, where=where) |
|
else: |
|
new_value = scheduler(where) |
|
param_group[option] = new_value |
|
|
|
def step(self, where, step, closure=None): |
|
self.step_schedulers(where, step) |
|
return self.optimizer.step(closure) |
|
|
|
def zero_grad(self, *args, **kwargs): |
|
return self.optimizer.zero_grad(*args, **kwargs) |
|
|
|
|
|
def set_default_parameters( |
|
scheduler_cfgs: List[DictConfig], all_parameter_names: Set[str] |
|
) -> None: |
|
"""Set up the "default" scheduler with the right parameters. |
|
|
|
Args: |
|
scheduler_cgfs: A list of scheduler configs, where each scheduler also |
|
specifies which parameters it applies to, based on the names of parameters |
|
or the class of the modules. At most one scheduler is allowed to skip this |
|
specification, which is used as a "default" specification for any remaining |
|
parameters. |
|
all_parameter_names: Names of all the parameters to consider. |
|
""" |
|
constraints = [ |
|
scheduler_cfg.parameter_names |
|
for scheduler_cfg in scheduler_cfgs |
|
if scheduler_cfg.parameter_names is not None |
|
] |
|
if len(constraints) == 0: |
|
default_params = set(all_parameter_names) |
|
else: |
|
default_params = all_parameter_names - set.union(*constraints) |
|
default_count = 0 |
|
for scheduler_cfg in scheduler_cfgs: |
|
if scheduler_cfg.parameter_names is None: |
|
scheduler_cfg.parameter_names = default_params |
|
default_count += 1 |
|
assert default_count <= 1, "Only one scheduler per option can be default" |
|
if default_count == 0: |
|
|
|
|
|
scheduler_cfgs.append({"parameter_names": default_params}) |
|
|
|
|
|
def name_constraints_to_parameters( |
|
param_constraints: List[Set[str]], named_parameters: Dict[str, Tensor] |
|
) -> List[torch.nn.Parameter]: |
|
"""Return parameters which match the intersection of parameter constraints. |
|
|
|
Note that this returns the parameters themselves, not their names. |
|
|
|
Args: |
|
param_constraints: A list, with each element being a set of allowed parameters. |
|
named_parameters: Mapping from a parameter name to the parameter itself. |
|
|
|
Returns: |
|
A list containing the parameters which overlap with _each_ constraint set from |
|
param_constraints. |
|
""" |
|
matching_names = set.intersection(*param_constraints) |
|
return [value for name, value in named_parameters.items() if name in matching_names] |
|
|
|
|
|
def map_scheduler_cfgs_to_param_groups( |
|
all_scheduler_cfgs: Iterable[List[Dict]], |
|
named_parameters: Dict[str, Tensor], |
|
) -> Tuple[List[Dict[Any, Any]], List[Dict[str, List[torch.nn.Parameter]]]]: |
|
"""Produce parameter groups corresponding to all the scheduler configs. |
|
|
|
Takes all the scheduler configs, each of which applies to a specific optimizer |
|
option (like "lr" or "weight_decay") and has a set of parameter names which it |
|
applies to, and produces a final set of param groups where each param group |
|
covers all the options which apply to a particular set of parameters. |
|
|
|
Args: |
|
all_scheduler_cfgs: All the scheduler configs covering every option. |
|
named_parameters: Mapping from a parameter name to the parameter itself. |
|
Returns: |
|
Tuple of lists of schedulers and param_groups, where schedulers[i] |
|
applies to param_groups[i]. |
|
""" |
|
|
|
scheduler_cfgs_per_param_group = itertools.product(*all_scheduler_cfgs) |
|
schedulers = [] |
|
param_groups = [] |
|
for scheduler_cfgs in scheduler_cfgs_per_param_group: |
|
param_constraints = [ |
|
scheduler_cfg["parameter_names"] for scheduler_cfg in scheduler_cfgs |
|
] |
|
matching_parameters = name_constraints_to_parameters( |
|
param_constraints, named_parameters |
|
) |
|
if len(matching_parameters) == 0: |
|
continue |
|
schedulers_for_group = { |
|
scheduler_cfg["option"]: scheduler_cfg["scheduler"] |
|
for scheduler_cfg in scheduler_cfgs |
|
if "option" in scheduler_cfg |
|
} |
|
schedulers.append(schedulers_for_group) |
|
param_groups.append({"params": matching_parameters}) |
|
return schedulers, param_groups |
|
|
|
|
|
def validate_param_group_params(param_groups: List[Dict], model: nn.Module): |
|
"""Check that the param groups are non-overlapping and cover all the parameters. |
|
|
|
Args: |
|
param_groups: List of all param groups |
|
model: Model to validate against. The check ensures that all the model |
|
parameters are part of param_groups |
|
""" |
|
for pg in param_groups: |
|
|
|
assert len(pg["params"]) == len(set(pg["params"])) |
|
parameters = [set(param_group["params"]) for param_group in param_groups] |
|
model_parameters = {parameter for _, parameter in model.named_parameters()} |
|
for p1, p2 in itertools.permutations(parameters, 2): |
|
assert p1.isdisjoint(p2), "Scheduler generated param_groups should be disjoint" |
|
assert set.union(*parameters) == model_parameters, ( |
|
"Scheduler generated param_groups must include all parameters of the model." |
|
f" Found {len(set.union(*parameters))} params whereas model has" |
|
f" {len(model_parameters)} params" |
|
) |
|
|
|
|
|
def unix_module_cls_pattern_to_parameter_names( |
|
filter_module_cls_names: List[str], |
|
module_cls_to_param_names: Dict[Type, str], |
|
) -> Union[None, Set[str]]: |
|
"""Returns param names which pass the filters specified in filter_module_cls_names. |
|
|
|
Args: |
|
filter_module_cls_names: A list of filter strings containing class names, like |
|
["torch.nn.LayerNorm", "torch.nn.BatchNorm2d"] |
|
module_cls_to_param_names: Mapping from module classes to the parameter names |
|
they contain. See `get_module_cls_to_param_names`. |
|
""" |
|
if filter_module_cls_names is None: |
|
return set() |
|
allowed_parameter_names = [] |
|
for module_cls_name in filter_module_cls_names: |
|
module_cls = hydra.utils.get_class(module_cls_name) |
|
if module_cls not in module_cls_to_param_names: |
|
raise AssertionError( |
|
f"module_cls_name {module_cls_name} does not " |
|
"match any classes in the model" |
|
) |
|
matching_parameters = module_cls_to_param_names[module_cls] |
|
assert ( |
|
len(matching_parameters) > 0 |
|
), f"module_cls_name {module_cls_name} does not contain any parameters in the model" |
|
logging.info( |
|
f"Matches for module_cls_name [{module_cls_name}]: {matching_parameters} " |
|
) |
|
allowed_parameter_names.append(matching_parameters) |
|
return set.union(*allowed_parameter_names) |
|
|
|
|
|
def unix_param_pattern_to_parameter_names( |
|
filter_param_names: Optional[List[str]], |
|
parameter_names: Dict[str, torch.Tensor], |
|
) -> Union[None, Set[str]]: |
|
"""Returns param names which pass the filters specified in filter_param_names. |
|
|
|
Args: |
|
filter_param_names: A list of unix-style filter strings with optional |
|
wildcards, like ["block.2.*", "block.2.linear.weight"] |
|
module_cls_to_param_names: Mapping from module classes to the parameter names |
|
they contain. See `get_module_cls_to_param_names`. |
|
""" |
|
|
|
if filter_param_names is None: |
|
return set() |
|
allowed_parameter_names = [] |
|
for param_name in filter_param_names: |
|
matching_parameters = set(fnmatch.filter(parameter_names, param_name)) |
|
assert ( |
|
len(matching_parameters) >= 1 |
|
), f"param_name {param_name} does not match any parameters in the model" |
|
logging.info(f"Matches for param_name [{param_name}]: {matching_parameters}") |
|
allowed_parameter_names.append(matching_parameters) |
|
return set.union(*allowed_parameter_names) |
|
|
|
|
|
def _unix_pattern_to_parameter_names( |
|
scheduler_cfg: DictConfig, |
|
parameter_names: Set[str], |
|
module_cls_to_param_names: Dict[Type, str], |
|
) -> Union[None, Set[str]]: |
|
"""Returns param names which pass the filters specified in scheduler_cfg. |
|
|
|
Args: |
|
scheduler_cfg: The config for the scheduler |
|
parameter_names: The set of all parameter names which will be filtered |
|
""" |
|
if "param_names" not in scheduler_cfg and "module_cls_names" not in scheduler_cfg: |
|
return None |
|
return unix_param_pattern_to_parameter_names( |
|
scheduler_cfg.get("param_names"), parameter_names |
|
).union( |
|
unix_module_cls_pattern_to_parameter_names( |
|
scheduler_cfg.get("module_cls_names"), module_cls_to_param_names |
|
) |
|
) |
|
|
|
|
|
def get_module_cls_to_param_names( |
|
model: nn.Module, param_allowlist: Set[str] = None |
|
) -> Dict[Type, str]: |
|
"""Produce a mapping from all the modules classes to the names of parames they own. |
|
|
|
Only counts a parameter as part of the immediate parent module, i.e. recursive |
|
parents do not count. |
|
|
|
Args: |
|
model: Model to iterate over |
|
param_allowlist: If specified, only these param names will be processed |
|
""" |
|
|
|
module_cls_to_params = {} |
|
for module_name, module in model.named_modules(): |
|
module_cls = type(module) |
|
module_cls_to_params.setdefault(module_cls, set()) |
|
for param_name, _ in module.named_parameters(recurse=False): |
|
full_param_name = get_full_parameter_name(module_name, param_name) |
|
if param_allowlist is None or full_param_name in param_allowlist: |
|
module_cls_to_params[module_cls].add(full_param_name) |
|
return module_cls_to_params |
|
|
|
|
|
def construct_optimizer( |
|
model: torch.nn.Module, |
|
optimizer_conf: Any, |
|
options_conf: Mapping[str, List] = None, |
|
param_group_modifiers_conf: List[Callable] = None, |
|
param_allowlist: Optional[Set[str]] = None, |
|
validate_param_groups=True, |
|
) -> Optimizer: |
|
""" |
|
Constructs a stochastic gradient descent or ADAM (or ADAMw) optimizer |
|
with momentum. i.e, constructs a torch.optim.Optimizer with zero-weight decay |
|
Batchnorm and/or no-update 1-D parameters support, based on the config. |
|
|
|
Supports wrapping the optimizer with Layer-wise Adaptive Rate Scaling |
|
(LARS): https://arxiv.org/abs/1708.03888 |
|
|
|
Args: |
|
model: model to perform stochastic gradient descent |
|
optimization or ADAM optimization. |
|
optimizer_conf: Hydra config consisting a partial torch optimizer like SGD or |
|
ADAM, still missing the params argument which this function provides to |
|
produce the final optimizer |
|
param_group_modifiers_conf: Optional user specified functions which can modify |
|
the final scheduler configs before the optimizer's param groups are built |
|
param_allowlist: The parameters to optimize. Parameters which are not part of |
|
this allowlist will be skipped. |
|
validate_param_groups: If enabled, valides that the produced param_groups don't |
|
overlap and cover all the model parameters. |
|
""" |
|
if param_allowlist is None: |
|
param_allowlist = {name for name, _ in model.named_parameters()} |
|
|
|
named_parameters = { |
|
name: param |
|
for name, param in model.named_parameters() |
|
if name in param_allowlist |
|
} |
|
|
|
if not options_conf: |
|
optimizer = hydra.utils.instantiate(optimizer_conf, named_parameters.values()) |
|
return Optimizer(optimizer) |
|
|
|
all_parameter_names = { |
|
name for name, _ in model.named_parameters() if name in param_allowlist |
|
} |
|
module_cls_to_all_param_names = get_module_cls_to_param_names( |
|
model, param_allowlist |
|
) |
|
|
|
scheduler_cfgs_per_option = hydra.utils.instantiate(options_conf) |
|
all_scheduler_cfgs = [] |
|
for option, scheduler_cfgs in scheduler_cfgs_per_option.items(): |
|
for config in scheduler_cfgs: |
|
config.option = option |
|
config.parameter_names = _unix_pattern_to_parameter_names( |
|
config, all_parameter_names, module_cls_to_all_param_names |
|
) |
|
set_default_parameters(scheduler_cfgs, all_parameter_names) |
|
all_scheduler_cfgs.append(scheduler_cfgs) |
|
|
|
if param_group_modifiers_conf: |
|
for custom_param_modifier in param_group_modifiers_conf: |
|
custom_param_modifier = hydra.utils.instantiate(custom_param_modifier) |
|
all_scheduler_cfgs = custom_param_modifier( |
|
scheduler_cfgs=all_scheduler_cfgs, model=model |
|
) |
|
schedulers, param_groups = map_scheduler_cfgs_to_param_groups( |
|
all_scheduler_cfgs, named_parameters |
|
) |
|
if validate_param_groups: |
|
validate_param_group_params(param_groups, model) |
|
optimizer = hydra.utils.instantiate(optimizer_conf, param_groups) |
|
return Optimizer(optimizer, schedulers) |
|
|
|
|
|
def get_full_parameter_name(module_name, param_name): |
|
if module_name == "": |
|
return param_name |
|
return f"{module_name}.{param_name}" |
|
|
|
|
|
class GradientClipper: |
|
""" |
|
Gradient clipping utils that works for DDP |
|
""" |
|
|
|
def __init__(self, max_norm: float = 1.0, norm_type: int = 2): |
|
assert isinstance(max_norm, (int, float)) or max_norm is None |
|
self.max_norm = max_norm if max_norm is None else float(max_norm) |
|
self.norm_type = norm_type |
|
|
|
def __call__(self, model: nn.Module): |
|
if self.max_norm is None: |
|
return |
|
|
|
nn.utils.clip_grad_norm_( |
|
model.parameters(), max_norm=self.max_norm, norm_type=self.norm_type |
|
) |
|
|
|
|
|
class ValueScaler: |
|
def __init__(self, scheduler, mult_val: float): |
|
self.scheduler = scheduler |
|
self.mult_val = mult_val |
|
|
|
def __call__(self, *args, **kwargs): |
|
val = self.scheduler(*args, **kwargs) |
|
return val * self.mult_val |
|
|
|
|
|
def rgetattr(obj, rattrs: str = None): |
|
""" |
|
Like getattr(), but supports dotted notation for nested objects. |
|
rattrs is a str of form 'attr1.attr2', returns obj.attr1.attr2 |
|
""" |
|
if rattrs is None: |
|
return obj |
|
attrs = rattrs.split(".") |
|
for attr in attrs: |
|
obj = getattr(obj, attr) |
|
return obj |
|
|
|
|
|
def layer_decay_param_modifier( |
|
scheduler_cfgs: List[List[Dict]], |
|
model, |
|
layer_decay_value: float, |
|
layer_decay_min: Optional[float] = None, |
|
apply_to: Optional[str] = None, |
|
overrides: List[Dict] = (), |
|
) -> List[List[Dict]]: |
|
""" |
|
Args |
|
- scheduler_cfgs: a list of omegaconf.ListConfigs. |
|
Each element in the list is a omegaconfg.DictConfig with the following structure |
|
{ |
|
"scheduler": <some fvcore scheduler> |
|
"option": <value> possible options are "lr", "weight_decay" etc. |
|
"parameter_names": Set of str indicating param names that this scheduler applies to |
|
} |
|
- model: a model that implements a method `get_layer_id` that maps layer_name to an integer and |
|
and a method get_num_layers. |
|
Alternatively, use apply_to argument to select a specific component of the model. |
|
- layer_decay_value: float |
|
- layer_decay_min: min val for layer decay |
|
- apply_to: optional arg to select which component of the model to apply the the layer decay modifier to |
|
- overrides: to manually override lr for specific patterns. Is a list of dicts. Each dict, has keys "pattern", "value". |
|
Returns |
|
- scheduler_configs: same structure as the input, elements can be modified |
|
""" |
|
model = rgetattr(model, apply_to) |
|
num_layers = model.get_num_layers() + 1 |
|
layer_decays = [ |
|
layer_decay_value ** (num_layers - i) for i in range(num_layers + 1) |
|
] |
|
if layer_decay_min is not None: |
|
layer_decays = [max(val, layer_decay_min) for val in layer_decays] |
|
final_scheduler_cfgs = [] |
|
|
|
for scheduler_cfg_group in scheduler_cfgs: |
|
curr_cfg_group = [] |
|
|
|
for scheduler_cfg in scheduler_cfg_group: |
|
if scheduler_cfg["option"] != "lr": |
|
curr_cfg_group.append(scheduler_cfg) |
|
continue |
|
|
|
|
|
|
|
parameter_names = sorted(scheduler_cfg["parameter_names"]) |
|
|
|
|
|
layer_cfg_groups = {} |
|
for param_name in parameter_names: |
|
layer_id = num_layers |
|
this_scale = layer_decays[layer_id] |
|
if param_name.startswith(apply_to): |
|
layer_id = model.get_layer_id(param_name) |
|
this_scale = layer_decays[layer_id] |
|
|
|
for override in overrides: |
|
if fnmatch.fnmatchcase(param_name, override["pattern"]): |
|
this_scale = float(override["value"]) |
|
layer_id = override["pattern"] |
|
break |
|
|
|
if layer_id not in layer_cfg_groups: |
|
curr_param = { |
|
"option": scheduler_cfg["option"], |
|
"scheduler": ValueScaler( |
|
scheduler_cfg["scheduler"], this_scale |
|
), |
|
"parameter_names": {param_name}, |
|
} |
|
else: |
|
curr_param = layer_cfg_groups[layer_id] |
|
curr_param["parameter_names"].add(param_name) |
|
layer_cfg_groups[layer_id] = curr_param |
|
|
|
for layer_cfg in layer_cfg_groups.values(): |
|
curr_cfg_group.append(layer_cfg) |
|
|
|
final_scheduler_cfgs.append(curr_cfg_group) |
|
return final_scheduler_cfgs |
|
|