|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import quaternion |
|
import habitat_sim |
|
import json |
|
from sklearn.neighbors import NearestNeighbors |
|
import cv2 |
|
|
|
|
|
R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0) |
|
R_HABITAT2OPENCV = R_OPENCV2HABITAT.T |
|
DEG2RAD = np.pi / 180 |
|
|
|
def compute_camera_intrinsics(height, width, hfov): |
|
f = width/2 / np.tan(hfov/2 * np.pi/180) |
|
cu, cv = width/2, height/2 |
|
return f, cu, cv |
|
|
|
def compute_camera_pose_opencv_convention(camera_position, camera_orientation): |
|
R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT |
|
t_cam2world = np.asarray(camera_position) |
|
return R_cam2world, t_cam2world |
|
|
|
def compute_pointmap(depthmap, hfov): |
|
""" Compute a HxWx3 pointmap in camera frame from a HxW depth map.""" |
|
height, width = depthmap.shape |
|
f, cu, cv = compute_camera_intrinsics(height, width, hfov) |
|
|
|
z_cam = depthmap |
|
u, v = np.meshgrid(range(width), range(height)) |
|
x_cam = (u - cu) / f * z_cam |
|
y_cam = (v - cv) / f * z_cam |
|
X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1) |
|
return X_cam |
|
|
|
def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation): |
|
"""Return a 3D point cloud corresponding to valid pixels of the depth map""" |
|
R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation) |
|
|
|
X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov) |
|
valid_mask = (X_cam[:,:,2] != 0.0) |
|
|
|
X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()] |
|
X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3) |
|
return X_world |
|
|
|
def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False): |
|
""" |
|
Compute 'overlapping' metrics based on a distance threshold between two point clouds. |
|
""" |
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2) |
|
distances, indices = nbrs.kneighbors(pointcloud1) |
|
intersection1 = np.count_nonzero(distances.flatten() < distance_threshold) |
|
|
|
data = {"intersection1": intersection1, |
|
"size1": len(pointcloud1)} |
|
if compute_symmetric: |
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1) |
|
distances, indices = nbrs.kneighbors(pointcloud2) |
|
intersection2 = np.count_nonzero(distances.flatten() < distance_threshold) |
|
data["intersection2"] = intersection2 |
|
data["size2"] = len(pointcloud2) |
|
|
|
return data |
|
|
|
def _append_camera_parameters(observation, hfov, camera_location, camera_rotation): |
|
""" |
|
Add camera parameters to the observation dictionnary produced by Habitat-Sim |
|
In-place modifications. |
|
""" |
|
R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation) |
|
height, width = observation['depth'].shape |
|
f, cu, cv = compute_camera_intrinsics(height, width, hfov) |
|
K = np.asarray([[f, 0, cu], |
|
[0, f, cv], |
|
[0, 0, 1.0]]) |
|
observation["camera_intrinsics"] = K |
|
observation["t_cam2world"] = t_cam2world |
|
observation["R_cam2world"] = R_cam2world |
|
|
|
def look_at(eye, center, up, return_cam2world=True): |
|
""" |
|
Return camera pose looking at a given center point. |
|
Analogous of gluLookAt function, using OpenCV camera convention. |
|
""" |
|
z = center - eye |
|
z /= np.linalg.norm(z, axis=-1, keepdims=True) |
|
y = -up |
|
y = y - np.sum(y * z, axis=-1, keepdims=True) * z |
|
y /= np.linalg.norm(y, axis=-1, keepdims=True) |
|
x = np.cross(y, z, axis=-1) |
|
|
|
if return_cam2world: |
|
R = np.stack((x, y, z), axis=-1) |
|
t = eye |
|
else: |
|
|
|
|
|
R = np.stack((x, y, z), axis=-2) |
|
t = - np.einsum('...ij, ...j', R, eye) |
|
return R, t |
|
|
|
def look_at_for_habitat(eye, center, up, return_cam2world=True): |
|
R, t = look_at(eye, center, up) |
|
orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T) |
|
return orientation, t |
|
|
|
def generate_orientation_noise(pan_range, tilt_range, roll_range): |
|
return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP) |
|
* quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT) |
|
* quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT)) |
|
|
|
|
|
class NoNaviguableSpaceError(RuntimeError): |
|
def __init__(self, *args): |
|
super().__init__(*args) |
|
|
|
class MultiviewHabitatSimGenerator: |
|
def __init__(self, |
|
scene, |
|
navmesh, |
|
scene_dataset_config_file, |
|
resolution = (240, 320), |
|
views_count=2, |
|
hfov = 60, |
|
gpu_id = 0, |
|
size = 10000, |
|
minimum_covisibility = 0.5, |
|
transform = None): |
|
self.scene = scene |
|
self.navmesh = navmesh |
|
self.scene_dataset_config_file = scene_dataset_config_file |
|
self.resolution = resolution |
|
self.views_count = views_count |
|
assert(self.views_count >= 1) |
|
self.hfov = hfov |
|
self.gpu_id = gpu_id |
|
self.size = size |
|
self.transform = transform |
|
|
|
|
|
self.pan_range = (-3, 3) |
|
self.tilt_range = (-10, 10) |
|
self.roll_range = (-5, 5) |
|
|
|
|
|
self.height_range = (1.2, 1.8) |
|
|
|
|
|
self.random_steps_count = 5 |
|
self.random_step_variance = 2.0 |
|
|
|
|
|
self.minimum_valid_fraction = 0.7 |
|
|
|
|
|
self.distance_threshold = 0.05 |
|
|
|
self.minimum_covisibility = minimum_covisibility |
|
|
|
|
|
self.max_attempts_count = 100 |
|
|
|
self.seed = None |
|
self._lazy_initialization() |
|
|
|
def _lazy_initialization(self): |
|
|
|
if self.seed == None: |
|
|
|
np.random.seed() |
|
self.seed = np.random.randint(2**32-1) |
|
sim_cfg = habitat_sim.SimulatorConfiguration() |
|
sim_cfg.scene_id = self.scene |
|
if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "": |
|
sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file |
|
sim_cfg.random_seed = self.seed |
|
sim_cfg.load_semantic_mesh = False |
|
sim_cfg.gpu_device_id = self.gpu_id |
|
|
|
depth_sensor_spec = habitat_sim.CameraSensorSpec() |
|
depth_sensor_spec.uuid = "depth" |
|
depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH |
|
depth_sensor_spec.resolution = self.resolution |
|
depth_sensor_spec.hfov = self.hfov |
|
depth_sensor_spec.position = [0.0, 0.0, 0] |
|
depth_sensor_spec.orientation |
|
|
|
rgb_sensor_spec = habitat_sim.CameraSensorSpec() |
|
rgb_sensor_spec.uuid = "color" |
|
rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR |
|
rgb_sensor_spec.resolution = self.resolution |
|
rgb_sensor_spec.hfov = self.hfov |
|
rgb_sensor_spec.position = [0.0, 0.0, 0] |
|
agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec]) |
|
|
|
cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg]) |
|
self.sim = habitat_sim.Simulator(cfg) |
|
if self.navmesh is not None and self.navmesh != "": |
|
|
|
self.sim.pathfinder.load_nav_mesh(self.navmesh) |
|
|
|
if not self.sim.pathfinder.is_loaded: |
|
|
|
navmesh_settings = habitat_sim.NavMeshSettings() |
|
navmesh_settings.set_defaults() |
|
self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True) |
|
|
|
|
|
if not self.sim.pathfinder.is_loaded: |
|
raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})") |
|
|
|
self.agent = self.sim.initialize_agent(agent_id=0) |
|
|
|
def close(self): |
|
self.sim.close() |
|
|
|
def __del__(self): |
|
self.sim.close() |
|
|
|
def __len__(self): |
|
return self.size |
|
|
|
def sample_random_viewpoint(self): |
|
""" Sample a random viewpoint using the navmesh """ |
|
nav_point = self.sim.pathfinder.get_random_navigable_point() |
|
|
|
|
|
viewpoint_height = np.random.uniform(*self.height_range) |
|
viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP |
|
viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) |
|
return viewpoint_position, viewpoint_orientation, nav_point |
|
|
|
def sample_other_random_viewpoint(self, observed_point, nav_point): |
|
""" Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point.""" |
|
other_nav_point = nav_point |
|
|
|
walk_directions = self.random_step_variance * np.asarray([1,0,1]) |
|
for i in range(self.random_steps_count): |
|
temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3)) |
|
|
|
if not np.isnan(temp[0]): |
|
other_nav_point = temp |
|
|
|
other_viewpoint_height = np.random.uniform(*self.height_range) |
|
other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP |
|
|
|
|
|
rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True) |
|
rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) |
|
return position, rotation, other_nav_point |
|
|
|
def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud): |
|
""" Check if a viewpoint is valid and overlaps significantly with a reference one. """ |
|
|
|
pixels_count = self.resolution[0] * self.resolution[1] |
|
valid_fraction = len(other_pointcloud) / pixels_count |
|
assert valid_fraction <= 1.0 and valid_fraction >= 0.0 |
|
overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True) |
|
covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count) |
|
is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility) |
|
return is_valid, valid_fraction, covisibility |
|
|
|
def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation): |
|
""" Check if a viewpoint is valid and overlaps significantly with a reference one. """ |
|
|
|
other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation) |
|
return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) |
|
|
|
def render_viewpoint(self, viewpoint_position, viewpoint_orientation): |
|
agent_state = habitat_sim.AgentState() |
|
agent_state.position = viewpoint_position |
|
agent_state.rotation = viewpoint_orientation |
|
self.agent.set_state(agent_state) |
|
viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0) |
|
_append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation) |
|
return viewpoint_observations |
|
|
|
def __getitem__(self, useless_idx): |
|
ref_position, ref_orientation, nav_point = self.sample_random_viewpoint() |
|
ref_observations = self.render_viewpoint(ref_position, ref_orientation) |
|
|
|
ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, |
|
camera_position=ref_position, camera_rotation=ref_orientation) |
|
|
|
pixels_count = self.resolution[0] * self.resolution[1] |
|
ref_valid_fraction = len(ref_pointcloud) / pixels_count |
|
assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0 |
|
if ref_valid_fraction < self.minimum_valid_fraction: |
|
|
|
return self[0] |
|
|
|
observed_point = np.mean(ref_pointcloud, axis=0) |
|
|
|
|
|
viewpoints_observations = [ref_observations] |
|
viewpoints_covisibility = [ref_valid_fraction] |
|
viewpoints_positions = [ref_position] |
|
viewpoints_orientations = [quaternion.as_float_array(ref_orientation)] |
|
viewpoints_clouds = [ref_pointcloud] |
|
viewpoints_valid_fractions = [ref_valid_fraction] |
|
|
|
for _ in range(self.views_count - 1): |
|
|
|
successful_sampling = False |
|
for sampling_attempt in range(self.max_attempts_count): |
|
position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point) |
|
|
|
other_viewpoint_observations = self.render_viewpoint(position, rotation) |
|
other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation) |
|
|
|
is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) |
|
if is_valid: |
|
successful_sampling = True |
|
break |
|
if not successful_sampling: |
|
print("WARNING: Maximum number of attempts reached.") |
|
|
|
return self[0] |
|
viewpoints_observations.append(other_viewpoint_observations) |
|
viewpoints_covisibility.append(covisibility) |
|
viewpoints_positions.append(position) |
|
viewpoints_orientations.append(quaternion.as_float_array(rotation)) |
|
viewpoints_clouds.append(other_pointcloud) |
|
viewpoints_valid_fractions.append(valid_fraction) |
|
|
|
|
|
pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations))) |
|
for i in range(len(viewpoints_observations)): |
|
pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i] |
|
for j in range(i+1, len(viewpoints_observations)): |
|
overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True) |
|
pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count |
|
pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count |
|
|
|
|
|
data = {"observations": viewpoints_observations, |
|
"positions": np.asarray(viewpoints_positions), |
|
"orientations": np.asarray(viewpoints_orientations), |
|
"covisibility_ratios": np.asarray(viewpoints_covisibility), |
|
"valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float), |
|
"pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float), |
|
} |
|
|
|
if self.transform is not None: |
|
data = self.transform(data) |
|
return data |
|
|
|
def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False): |
|
""" |
|
Return a list of images corresponding to a spiral trajectory from a random starting point. |
|
Useful to generate nice visualisations. |
|
Use an even number of half turns to get a nice "C1-continuous" loop effect |
|
""" |
|
ref_position, ref_orientation, navpoint = self.sample_random_viewpoint() |
|
ref_observations = self.render_viewpoint(ref_position, ref_orientation) |
|
ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, |
|
camera_position=ref_position, camera_rotation=ref_orientation) |
|
pixels_count = self.resolution[0] * self.resolution[1] |
|
if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction: |
|
|
|
return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation) |
|
|
|
|
|
observed_point = np.mean(ref_pointcloud, axis=0) |
|
ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation) |
|
|
|
images = [] |
|
is_valid = [] |
|
|
|
for i, alpha in enumerate(np.linspace(0, 1, images_count)): |
|
r = max_radius * np.abs(np.sin(alpha * np.pi)) |
|
theta = alpha * half_turns * np.pi |
|
x = r * np.cos(theta) |
|
y = r * np.sin(theta) |
|
z = 0.0 |
|
position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten() |
|
if use_constant_orientation: |
|
orientation = ref_orientation |
|
else: |
|
|
|
orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP) |
|
observations = self.render_viewpoint(position, orientation) |
|
images.append(observations['color'][...,:3]) |
|
_is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation) |
|
is_valid.append(_is_valid) |
|
return images, np.all(is_valid) |