|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.data as data |
|
import torch.nn.functional as F |
|
|
|
import os |
|
import math |
|
import random |
|
from glob import glob |
|
import os.path as osp |
|
|
|
from utils import frame_utils |
|
from utils.augmentor import FlowAugmentor, SparseFlowAugmentor |
|
|
|
|
|
class FlowDataset(data.Dataset): |
|
def __init__(self, aug_params=None, sparse=False): |
|
self.augmentor = None |
|
self.sparse = sparse |
|
if aug_params is not None: |
|
if sparse: |
|
self.augmentor = SparseFlowAugmentor(**aug_params) |
|
else: |
|
self.augmentor = FlowAugmentor(**aug_params) |
|
|
|
self.is_test = False |
|
self.init_seed = False |
|
self.flow_list = [] |
|
self.image_list = [] |
|
self.extra_info = [] |
|
|
|
def __getitem__(self, index): |
|
|
|
if self.is_test: |
|
img1 = frame_utils.read_gen(self.image_list[index][0]) |
|
img2 = frame_utils.read_gen(self.image_list[index][1]) |
|
img1 = np.array(img1).astype(np.uint8)[..., :3] |
|
img2 = np.array(img2).astype(np.uint8)[..., :3] |
|
img1 = torch.from_numpy(img1).permute(2, 0, 1).float() |
|
img2 = torch.from_numpy(img2).permute(2, 0, 1).float() |
|
return img1, img2, self.extra_info[index] |
|
|
|
if not self.init_seed: |
|
worker_info = torch.utils.data.get_worker_info() |
|
if worker_info is not None: |
|
torch.manual_seed(worker_info.id) |
|
np.random.seed(worker_info.id) |
|
random.seed(worker_info.id) |
|
self.init_seed = True |
|
|
|
index = index % len(self.image_list) |
|
valid = None |
|
if self.sparse: |
|
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) |
|
else: |
|
flow = frame_utils.read_gen(self.flow_list[index]) |
|
|
|
img1 = frame_utils.read_gen(self.image_list[index][0]) |
|
img2 = frame_utils.read_gen(self.image_list[index][1]) |
|
|
|
flow = np.array(flow).astype(np.float32) |
|
img1 = np.array(img1).astype(np.uint8) |
|
img2 = np.array(img2).astype(np.uint8) |
|
|
|
|
|
if len(img1.shape) == 2: |
|
img1 = np.tile(img1[...,None], (1, 1, 3)) |
|
img2 = np.tile(img2[...,None], (1, 1, 3)) |
|
else: |
|
img1 = img1[..., :3] |
|
img2 = img2[..., :3] |
|
|
|
if self.augmentor is not None: |
|
if self.sparse: |
|
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) |
|
else: |
|
img1, img2, flow = self.augmentor(img1, img2, flow) |
|
|
|
img1 = torch.from_numpy(img1).permute(2, 0, 1).float() |
|
img2 = torch.from_numpy(img2).permute(2, 0, 1).float() |
|
flow = torch.from_numpy(flow).permute(2, 0, 1).float() |
|
|
|
if valid is not None: |
|
valid = torch.from_numpy(valid) |
|
else: |
|
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) |
|
|
|
return img1, img2, flow, valid.float() |
|
|
|
|
|
def __rmul__(self, v): |
|
self.flow_list = v * self.flow_list |
|
self.image_list = v * self.image_list |
|
return self |
|
|
|
def __len__(self): |
|
return len(self.image_list) |
|
|
|
|
|
class MpiSintel(FlowDataset): |
|
def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'): |
|
super(MpiSintel, self).__init__(aug_params) |
|
flow_root = osp.join(root, split, 'flow') |
|
image_root = osp.join(root, split, dstype) |
|
|
|
if split == 'test': |
|
self.is_test = True |
|
|
|
for scene in os.listdir(image_root): |
|
image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) |
|
for i in range(len(image_list)-1): |
|
self.image_list += [ [image_list[i], image_list[i+1]] ] |
|
self.extra_info += [ (scene, i) ] |
|
|
|
if split != 'test': |
|
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) |
|
|
|
|
|
class FlyingChairs(FlowDataset): |
|
def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'): |
|
super(FlyingChairs, self).__init__(aug_params) |
|
|
|
images = sorted(glob(osp.join(root, '*.ppm'))) |
|
flows = sorted(glob(osp.join(root, '*.flo'))) |
|
assert (len(images)//2 == len(flows)) |
|
|
|
split_list = np.loadtxt('chairs_split.txt', dtype=np.int32) |
|
for i in range(len(flows)): |
|
xid = split_list[i] |
|
if (split=='training' and xid==1) or (split=='validation' and xid==2): |
|
self.flow_list += [ flows[i] ] |
|
self.image_list += [ [images[2*i], images[2*i+1]] ] |
|
|
|
|
|
class FlyingThings3D(FlowDataset): |
|
def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'): |
|
super(FlyingThings3D, self).__init__(aug_params) |
|
|
|
for cam in ['left']: |
|
for direction in ['into_future', 'into_past']: |
|
image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*'))) |
|
image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) |
|
|
|
flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*'))) |
|
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) |
|
|
|
for idir, fdir in zip(image_dirs, flow_dirs): |
|
images = sorted(glob(osp.join(idir, '*.png')) ) |
|
flows = sorted(glob(osp.join(fdir, '*.pfm')) ) |
|
for i in range(len(flows)-1): |
|
if direction == 'into_future': |
|
self.image_list += [ [images[i], images[i+1]] ] |
|
self.flow_list += [ flows[i] ] |
|
elif direction == 'into_past': |
|
self.image_list += [ [images[i+1], images[i]] ] |
|
self.flow_list += [ flows[i+1] ] |
|
|
|
|
|
class KITTI(FlowDataset): |
|
def __init__(self, aug_params=None, split='training', root='datasets/KITTI'): |
|
super(KITTI, self).__init__(aug_params, sparse=True) |
|
if split == 'testing': |
|
self.is_test = True |
|
|
|
root = osp.join(root, split) |
|
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) |
|
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) |
|
|
|
for img1, img2 in zip(images1, images2): |
|
frame_id = img1.split('/')[-1] |
|
self.extra_info += [ [frame_id] ] |
|
self.image_list += [ [img1, img2] ] |
|
|
|
if split == 'training': |
|
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) |
|
|
|
|
|
class HD1K(FlowDataset): |
|
def __init__(self, aug_params=None, root='datasets/HD1k'): |
|
super(HD1K, self).__init__(aug_params, sparse=True) |
|
|
|
seq_ix = 0 |
|
while 1: |
|
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) |
|
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) |
|
|
|
if len(flows) == 0: |
|
break |
|
|
|
for i in range(len(flows)-1): |
|
self.flow_list += [flows[i]] |
|
self.image_list += [ [images[i], images[i+1]] ] |
|
|
|
seq_ix += 1 |
|
|
|
|
|
def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): |
|
""" Create the data loader for the corresponding trainign set """ |
|
|
|
if args.stage == 'chairs': |
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} |
|
train_dataset = FlyingChairs(aug_params, split='training') |
|
|
|
elif args.stage == 'things': |
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} |
|
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') |
|
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') |
|
train_dataset = clean_dataset + final_dataset |
|
|
|
elif args.stage == 'sintel': |
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} |
|
things = FlyingThings3D(aug_params, dstype='frames_cleanpass') |
|
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') |
|
sintel_final = MpiSintel(aug_params, split='training', dstype='final') |
|
|
|
if TRAIN_DS == 'C+T+K+S+H': |
|
kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}) |
|
hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}) |
|
train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things |
|
|
|
elif TRAIN_DS == 'C+T+K/S': |
|
train_dataset = 100*sintel_clean + 100*sintel_final + things |
|
|
|
elif args.stage == 'kitti': |
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} |
|
train_dataset = KITTI(aug_params, split='training') |
|
|
|
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, |
|
pin_memory=False, shuffle=True, num_workers=4, drop_last=True) |
|
|
|
print('Training with %d image pairs' % len(train_dataset)) |
|
return train_loader |
|
|
|
|