|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import math |
|
import builtins |
|
import datetime |
|
import gradio |
|
import os |
|
import torch |
|
import numpy as np |
|
import functools |
|
import trimesh |
|
import copy |
|
from scipy.spatial.transform import Rotation |
|
|
|
from dust3r.inference import inference |
|
from dust3r.image_pairs import make_pairs |
|
from dust3r.utils.image import load_images, rgb |
|
from dust3r.utils.device import to_numpy |
|
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes |
|
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode |
|
|
|
import matplotlib.pyplot as pl |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser_url = parser.add_mutually_exclusive_group() |
|
parser_url.add_argument("--local_network", action='store_true', default=False, |
|
help="make app accessible on local network: address will be set to 0.0.0.0") |
|
parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1") |
|
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") |
|
parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). " |
|
"If None, will search for an available port starting at 7860."), |
|
default=None) |
|
parser_weights = parser.add_mutually_exclusive_group(required=True) |
|
parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None) |
|
parser_weights.add_argument("--model_name", type=str, help="name of the model weights", |
|
choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt", |
|
"DUSt3R_ViTLarge_BaseDecoder_512_linear", |
|
"DUSt3R_ViTLarge_BaseDecoder_224_linear"]) |
|
parser.add_argument("--device", type=str, default='cuda', help="pytorch device") |
|
parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir") |
|
parser.add_argument("--silent", action='store_true', default=False, |
|
help="silence logs") |
|
return parser |
|
|
|
|
|
def set_print_with_timestamp(time_format="%Y-%m-%d %H:%M:%S"): |
|
builtin_print = builtins.print |
|
|
|
def print_with_timestamp(*args, **kwargs): |
|
now = datetime.datetime.now() |
|
formatted_date_time = now.strftime(time_format) |
|
|
|
builtin_print(f'[{formatted_date_time}] ', end='') |
|
builtin_print(*args, **kwargs) |
|
|
|
builtins.print = print_with_timestamp |
|
|
|
|
|
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, |
|
cam_color=None, as_pointcloud=False, |
|
transparent_cams=False, silent=False): |
|
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) |
|
pts3d = to_numpy(pts3d) |
|
imgs = to_numpy(imgs) |
|
focals = to_numpy(focals) |
|
cams2world = to_numpy(cams2world) |
|
|
|
scene = trimesh.Scene() |
|
|
|
|
|
if as_pointcloud: |
|
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) |
|
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) |
|
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) |
|
scene.add_geometry(pct) |
|
else: |
|
meshes = [] |
|
for i in range(len(imgs)): |
|
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) |
|
mesh = trimesh.Trimesh(**cat_meshes(meshes)) |
|
scene.add_geometry(mesh) |
|
|
|
|
|
for i, pose_c2w in enumerate(cams2world): |
|
if isinstance(cam_color, list): |
|
camera_edge_color = cam_color[i] |
|
else: |
|
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] |
|
add_scene_cam(scene, pose_c2w, camera_edge_color, |
|
None if transparent_cams else imgs[i], focals[i], |
|
imsize=imgs[i].shape[1::-1], screen_width=cam_size) |
|
|
|
rot = np.eye(4) |
|
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() |
|
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) |
|
outfile = os.path.join(outdir, 'scene.glb') |
|
if not silent: |
|
print('(exporting 3D scene to', outfile, ')') |
|
scene.export(file_obj=outfile) |
|
return outfile |
|
|
|
|
|
def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, |
|
clean_depth=False, transparent_cams=False, cam_size=0.05): |
|
""" |
|
extract 3D_model (glb file) from a reconstructed scene |
|
""" |
|
if scene is None: |
|
return None |
|
|
|
if clean_depth: |
|
scene = scene.clean_pointcloud() |
|
if mask_sky: |
|
scene = scene.mask_sky() |
|
|
|
|
|
rgbimg = scene.imgs |
|
focals = scene.get_focals().cpu() |
|
cams2world = scene.get_im_poses().cpu() |
|
|
|
pts3d = to_numpy(scene.get_pts3d()) |
|
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) |
|
msk = to_numpy(scene.get_masks()) |
|
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, |
|
transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) |
|
|
|
|
|
def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, schedule, niter, min_conf_thr, |
|
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, |
|
scenegraph_type, winsize, refid): |
|
""" |
|
from a list of images, run dust3r inference, global aligner. |
|
then run get_3D_model_from_scene |
|
""" |
|
imgs = load_images(filelist, size=image_size, verbose=not silent) |
|
if len(imgs) == 1: |
|
imgs = [imgs[0], copy.deepcopy(imgs[0])] |
|
imgs[1]['idx'] = 1 |
|
if scenegraph_type == "swin": |
|
scenegraph_type = scenegraph_type + "-" + str(winsize) |
|
elif scenegraph_type == "oneref": |
|
scenegraph_type = scenegraph_type + "-" + str(refid) |
|
|
|
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) |
|
output = inference(pairs, model, device, batch_size=1, verbose=not silent) |
|
|
|
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer |
|
scene = global_aligner(output, device=device, mode=mode, verbose=not silent) |
|
lr = 0.01 |
|
|
|
if mode == GlobalAlignerMode.PointCloudOptimizer: |
|
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr) |
|
|
|
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size) |
|
|
|
|
|
|
|
|
|
rgbimg = scene.imgs |
|
depths = to_numpy(scene.get_depthmaps()) |
|
confs = to_numpy([c for c in scene.im_conf]) |
|
cmap = pl.get_cmap('jet') |
|
depths_max = max([d.max() for d in depths]) |
|
depths = [d / depths_max for d in depths] |
|
confs_max = max([d.max() for d in confs]) |
|
confs = [cmap(d / confs_max) for d in confs] |
|
|
|
imgs = [] |
|
for i in range(len(rgbimg)): |
|
imgs.append(rgbimg[i]) |
|
imgs.append(rgb(depths[i])) |
|
imgs.append(rgb(confs[i])) |
|
|
|
return scene, outfile, imgs |
|
|
|
|
|
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): |
|
num_files = len(inputfiles) if inputfiles is not None else 1 |
|
max_winsize = max(1, math.ceil((num_files - 1) / 2)) |
|
if scenegraph_type == "swin": |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, |
|
minimum=1, maximum=max_winsize, step=1, visible=True) |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, |
|
maximum=num_files - 1, step=1, visible=False) |
|
elif scenegraph_type == "oneref": |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, |
|
minimum=1, maximum=max_winsize, step=1, visible=False) |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, |
|
maximum=num_files - 1, step=1, visible=True) |
|
else: |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, |
|
minimum=1, maximum=max_winsize, step=1, visible=False) |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, |
|
maximum=num_files - 1, step=1, visible=False) |
|
return winsize, refid |
|
|
|
|
|
def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False): |
|
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size) |
|
model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) |
|
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: |
|
|
|
scene = gradio.State(None) |
|
gradio.HTML('<h2 style="text-align: center;">DUSt3R Demo</h2>') |
|
with gradio.Column(): |
|
inputfiles = gradio.File(file_count="multiple") |
|
with gradio.Row(): |
|
schedule = gradio.Dropdown(["linear", "cosine"], |
|
value='linear', label="schedule", info="For global alignment!") |
|
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000, |
|
label="num_iterations", info="For global alignment!") |
|
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), |
|
("swin: sliding window", "swin"), |
|
("oneref: match one image with all", "oneref")], |
|
value='complete', label="Scenegraph", |
|
info="Define how to make pairs", |
|
interactive=True) |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, |
|
minimum=1, maximum=1, step=1, visible=False) |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) |
|
|
|
run_btn = gradio.Button("Run") |
|
|
|
with gradio.Row(): |
|
|
|
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1) |
|
|
|
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001) |
|
with gradio.Row(): |
|
as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud") |
|
|
|
mask_sky = gradio.Checkbox(value=False, label="Mask sky") |
|
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") |
|
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") |
|
|
|
outmodel = gradio.Model3D() |
|
outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%") |
|
|
|
|
|
scenegraph_type.change(set_scenegraph_options, |
|
inputs=[inputfiles, winsize, refid, scenegraph_type], |
|
outputs=[winsize, refid]) |
|
inputfiles.change(set_scenegraph_options, |
|
inputs=[inputfiles, winsize, refid, scenegraph_type], |
|
outputs=[winsize, refid]) |
|
run_btn.click(fn=recon_fun, |
|
inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud, |
|
mask_sky, clean_depth, transparent_cams, cam_size, |
|
scenegraph_type, winsize, refid], |
|
outputs=[scene, outmodel, outgallery]) |
|
min_conf_thr.release(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
cam_size.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
as_pointcloud.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
mask_sky.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
clean_depth.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
transparent_cams.change(model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size], |
|
outputs=outmodel) |
|
demo.launch(share=False, server_name=server_name, server_port=server_port) |
|
|