cyun9286's picture
Add application file
f53b39e
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
import logging
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
import numpy as np
import pillow_heif
from PIL import ExifTags, Image, TiffTags
from pillow_heif import register_heif_opener
register_heif_opener()
LOGGER = logging.getLogger(__name__)
def extract_exif(img_pil: Image) -> Dict[str, Any]:
"""Return exif information as a dictionary.
Args:
----
img_pil: A Pillow image.
Returns:
-------
A dictionary with extracted EXIF information.
"""
# Get full exif description from get_ifd(0x8769):
# cf https://pillow.readthedocs.io/en/stable/releasenotes/8.2.0.html#image-getexif-exif-and-gps-ifd
img_exif = img_pil.getexif().get_ifd(0x8769)
exif_dict = {ExifTags.TAGS[k]: v for k, v in img_exif.items() if k in ExifTags.TAGS}
tiff_tags = img_pil.getexif()
tiff_dict = {
TiffTags.TAGS_V2[k].name: v
for k, v in tiff_tags.items()
if k in TiffTags.TAGS_V2
}
return {**exif_dict, **tiff_dict}
def fpx_from_f35(width: float, height: float, f_mm: float = 50) -> float:
"""Convert a focal length given in mm (35mm film equivalent) to pixels."""
return f_mm * np.sqrt(width**2.0 + height**2.0) / np.sqrt(36**2 + 24**2)
def load_rgb(
path: Union[Path, str], auto_rotate: bool = True, remove_alpha: bool = True
) -> Tuple[np.ndarray, List[bytes], float]:
"""Load an RGB image.
Args:
----
path: The url to the image to load.
auto_rotate: Rotate the image based on the EXIF data, default is True.
remove_alpha: Remove the alpha channel, default is True.
Returns:
-------
img: The image loaded as a numpy array.
icc_profile: The color profile of the image.
f_px: The optional focal length in pixels, extracting from the exif data.
"""
LOGGER.debug(f"Loading image {path} ...")
path = Path(path)
if path.suffix.lower() in [".heic"]:
heif_file = pillow_heif.open_heif(path, convert_hdr_to_8bit=True)
img_pil = heif_file.to_pillow()
else:
img_pil = Image.open(path)
img_exif = extract_exif(img_pil)
icc_profile = img_pil.info.get("icc_profile", None)
# Rotate the image.
if auto_rotate:
exif_orientation = img_exif.get("Orientation", 1)
if exif_orientation == 3:
img_pil = img_pil.transpose(Image.ROTATE_180)
elif exif_orientation == 6:
img_pil = img_pil.transpose(Image.ROTATE_270)
elif exif_orientation == 8:
img_pil = img_pil.transpose(Image.ROTATE_90)
elif exif_orientation != 1:
LOGGER.warning(f"Ignoring image orientation {exif_orientation}.")
img = np.array(img_pil)
# Convert to RGB if single channel.
if img.ndim < 3 or img.shape[2] == 1:
img = np.dstack((img, img, img))
if remove_alpha:
img = img[:, :, :3]
LOGGER.debug(f"\tHxW: {img.shape[0]}x{img.shape[1]}")
# Extract the focal length from exif data.
f_35mm = img_exif.get(
"FocalLengthIn35mmFilm",
img_exif.get(
"FocalLenIn35mmFilm", img_exif.get("FocalLengthIn35mmFormat", None)
),
)
if f_35mm is not None and f_35mm > 0:
LOGGER.debug(f"\tfocal length @ 35mm film: {f_35mm}mm")
f_px = fpx_from_f35(img.shape[1], img.shape[0], f_35mm)
else:
f_px = None
return img, icc_profile, f_px