|
|
|
|
|
|
|
|
|
|
|
|
|
import glob |
|
import logging |
|
import os |
|
from dataclasses import dataclass |
|
|
|
from typing import List, Optional |
|
|
|
import pandas as pd |
|
|
|
import torch |
|
|
|
from iopath.common.file_io import g_pathmgr |
|
|
|
from omegaconf.listconfig import ListConfig |
|
|
|
from training.dataset.vos_segment_loader import ( |
|
JSONSegmentLoader, |
|
MultiplePNGSegmentLoader, |
|
PalettisedPNGSegmentLoader, |
|
SA1BSegmentLoader, |
|
) |
|
|
|
|
|
@dataclass |
|
class VOSFrame: |
|
frame_idx: int |
|
image_path: str |
|
data: Optional[torch.Tensor] = None |
|
is_conditioning_only: Optional[bool] = False |
|
|
|
|
|
@dataclass |
|
class VOSVideo: |
|
video_name: str |
|
video_id: int |
|
frames: List[VOSFrame] |
|
|
|
def __len__(self): |
|
return len(self.frames) |
|
|
|
|
|
class VOSRawDataset: |
|
def __init__(self): |
|
pass |
|
|
|
def get_video(self, idx): |
|
raise NotImplementedError() |
|
|
|
|
|
class PNGRawDataset(VOSRawDataset): |
|
def __init__( |
|
self, |
|
img_folder, |
|
gt_folder, |
|
file_list_txt=None, |
|
excluded_videos_list_txt=None, |
|
sample_rate=1, |
|
is_palette=True, |
|
single_object_mode=False, |
|
truncate_video=-1, |
|
frames_sampling_mult=False, |
|
): |
|
self.img_folder = img_folder |
|
self.gt_folder = gt_folder |
|
self.sample_rate = sample_rate |
|
self.is_palette = is_palette |
|
self.single_object_mode = single_object_mode |
|
self.truncate_video = truncate_video |
|
|
|
|
|
if file_list_txt is not None: |
|
with g_pathmgr.open(file_list_txt, "r") as f: |
|
subset = [os.path.splitext(line.strip())[0] for line in f] |
|
else: |
|
subset = os.listdir(self.img_folder) |
|
|
|
|
|
if excluded_videos_list_txt is not None: |
|
with g_pathmgr.open(excluded_videos_list_txt, "r") as f: |
|
excluded_files = [os.path.splitext(line.strip())[0] for line in f] |
|
else: |
|
excluded_files = [] |
|
|
|
|
|
self.video_names = sorted( |
|
[video_name for video_name in subset if video_name not in excluded_files] |
|
) |
|
|
|
if self.single_object_mode: |
|
|
|
self.video_names = sorted( |
|
[ |
|
os.path.join(video_name, obj) |
|
for video_name in self.video_names |
|
for obj in os.listdir(os.path.join(self.gt_folder, video_name)) |
|
] |
|
) |
|
|
|
if frames_sampling_mult: |
|
video_names_mult = [] |
|
for video_name in self.video_names: |
|
num_frames = len(os.listdir(os.path.join(self.img_folder, video_name))) |
|
video_names_mult.extend([video_name] * num_frames) |
|
self.video_names = video_names_mult |
|
|
|
def get_video(self, idx): |
|
""" |
|
Given a VOSVideo object, return the mask tensors. |
|
""" |
|
video_name = self.video_names[idx] |
|
|
|
if self.single_object_mode: |
|
video_frame_root = os.path.join( |
|
self.img_folder, os.path.dirname(video_name) |
|
) |
|
else: |
|
video_frame_root = os.path.join(self.img_folder, video_name) |
|
|
|
video_mask_root = os.path.join(self.gt_folder, video_name) |
|
|
|
if self.is_palette: |
|
segment_loader = PalettisedPNGSegmentLoader(video_mask_root) |
|
else: |
|
segment_loader = MultiplePNGSegmentLoader( |
|
video_mask_root, self.single_object_mode |
|
) |
|
|
|
all_frames = sorted(glob.glob(os.path.join(video_frame_root, "*.jpg"))) |
|
if self.truncate_video > 0: |
|
all_frames = all_frames[: self.truncate_video] |
|
frames = [] |
|
for _, fpath in enumerate(all_frames[:: self.sample_rate]): |
|
fid = int(os.path.basename(fpath).split(".")[0]) |
|
frames.append(VOSFrame(fid, image_path=fpath)) |
|
video = VOSVideo(video_name, idx, frames) |
|
return video, segment_loader |
|
|
|
def __len__(self): |
|
return len(self.video_names) |
|
|
|
|
|
class SA1BRawDataset(VOSRawDataset): |
|
def __init__( |
|
self, |
|
img_folder, |
|
gt_folder, |
|
file_list_txt=None, |
|
excluded_videos_list_txt=None, |
|
num_frames=1, |
|
mask_area_frac_thresh=1.1, |
|
uncertain_iou=-1, |
|
): |
|
self.img_folder = img_folder |
|
self.gt_folder = gt_folder |
|
self.num_frames = num_frames |
|
self.mask_area_frac_thresh = mask_area_frac_thresh |
|
self.uncertain_iou = uncertain_iou |
|
|
|
|
|
if file_list_txt is not None: |
|
with g_pathmgr.open(file_list_txt, "r") as f: |
|
subset = [os.path.splitext(line.strip())[0] for line in f] |
|
else: |
|
subset = os.listdir(self.img_folder) |
|
subset = [ |
|
path.split(".")[0] for path in subset if path.endswith(".jpg") |
|
] |
|
|
|
|
|
if excluded_videos_list_txt is not None: |
|
with g_pathmgr.open(excluded_videos_list_txt, "r") as f: |
|
excluded_files = [os.path.splitext(line.strip())[0] for line in f] |
|
else: |
|
excluded_files = [] |
|
|
|
|
|
self.video_names = [ |
|
video_name for video_name in subset if video_name not in excluded_files |
|
] |
|
|
|
def get_video(self, idx): |
|
""" |
|
Given a VOSVideo object, return the mask tensors. |
|
""" |
|
video_name = self.video_names[idx] |
|
|
|
video_frame_path = os.path.join(self.img_folder, video_name + ".jpg") |
|
video_mask_path = os.path.join(self.gt_folder, video_name + ".json") |
|
|
|
segment_loader = SA1BSegmentLoader( |
|
video_mask_path, |
|
mask_area_frac_thresh=self.mask_area_frac_thresh, |
|
video_frame_path=video_frame_path, |
|
uncertain_iou=self.uncertain_iou, |
|
) |
|
|
|
frames = [] |
|
for frame_idx in range(self.num_frames): |
|
frames.append(VOSFrame(frame_idx, image_path=video_frame_path)) |
|
video_name = video_name.split("_")[-1] |
|
|
|
video = VOSVideo(video_name, int(video_name), frames) |
|
return video, segment_loader |
|
|
|
def __len__(self): |
|
return len(self.video_names) |
|
|
|
|
|
class JSONRawDataset(VOSRawDataset): |
|
""" |
|
Dataset where the annotation in the format of SA-V json files |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_folder, |
|
gt_folder, |
|
file_list_txt=None, |
|
excluded_videos_list_txt=None, |
|
sample_rate=1, |
|
rm_unannotated=True, |
|
ann_every=1, |
|
frames_fps=24, |
|
): |
|
self.gt_folder = gt_folder |
|
self.img_folder = img_folder |
|
self.sample_rate = sample_rate |
|
self.rm_unannotated = rm_unannotated |
|
self.ann_every = ann_every |
|
self.frames_fps = frames_fps |
|
|
|
|
|
excluded_files = [] |
|
if excluded_videos_list_txt is not None: |
|
if isinstance(excluded_videos_list_txt, str): |
|
excluded_videos_lists = [excluded_videos_list_txt] |
|
elif isinstance(excluded_videos_list_txt, ListConfig): |
|
excluded_videos_lists = list(excluded_videos_list_txt) |
|
else: |
|
raise NotImplementedError |
|
|
|
for excluded_videos_list_txt in excluded_videos_lists: |
|
with open(excluded_videos_list_txt, "r") as f: |
|
excluded_files.extend( |
|
[os.path.splitext(line.strip())[0] for line in f] |
|
) |
|
excluded_files = set(excluded_files) |
|
|
|
|
|
if file_list_txt is not None: |
|
with g_pathmgr.open(file_list_txt, "r") as f: |
|
subset = [os.path.splitext(line.strip())[0] for line in f] |
|
else: |
|
subset = os.listdir(self.img_folder) |
|
|
|
self.video_names = sorted( |
|
[video_name for video_name in subset if video_name not in excluded_files] |
|
) |
|
|
|
def get_video(self, video_idx): |
|
""" |
|
Given a VOSVideo object, return the mask tensors. |
|
""" |
|
video_name = self.video_names[video_idx] |
|
video_json_path = os.path.join(self.gt_folder, video_name + "_manual.json") |
|
segment_loader = JSONSegmentLoader( |
|
video_json_path=video_json_path, |
|
ann_every=self.ann_every, |
|
frames_fps=self.frames_fps, |
|
) |
|
|
|
frame_ids = [ |
|
int(os.path.splitext(frame_name)[0]) |
|
for frame_name in sorted( |
|
os.listdir(os.path.join(self.img_folder, video_name)) |
|
) |
|
] |
|
|
|
frames = [ |
|
VOSFrame( |
|
frame_id, |
|
image_path=os.path.join( |
|
self.img_folder, f"{video_name}/%05d.jpg" % (frame_id) |
|
), |
|
) |
|
for frame_id in frame_ids[:: self.sample_rate] |
|
] |
|
|
|
if self.rm_unannotated: |
|
|
|
valid_frame_ids = [ |
|
i * segment_loader.ann_every |
|
for i, annot in enumerate(segment_loader.frame_annots) |
|
if annot is not None and None not in annot |
|
] |
|
frames = [f for f in frames if f.frame_idx in valid_frame_ids] |
|
|
|
video = VOSVideo(video_name, video_idx, frames) |
|
return video, segment_loader |
|
|
|
def __len__(self): |
|
return len(self.video_names) |
|
|