|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import Dict, List |
|
|
|
import torch |
|
import torch.distributed |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from training.trainer import CORE_LOSS_KEY |
|
|
|
from training.utils.distributed import get_world_size, is_dist_avail_and_initialized |
|
|
|
|
|
def dice_loss(inputs, targets, num_objects, loss_on_multimask=False): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
num_objects: Number of objects in the batch |
|
loss_on_multimask: True if multimask prediction is enabled |
|
Returns: |
|
Dice loss tensor |
|
""" |
|
inputs = inputs.sigmoid() |
|
if loss_on_multimask: |
|
|
|
assert inputs.dim() == 4 and targets.dim() == 4 |
|
|
|
inputs = inputs.flatten(2) |
|
targets = targets.flatten(2) |
|
numerator = 2 * (inputs * targets).sum(-1) |
|
else: |
|
inputs = inputs.flatten(1) |
|
numerator = 2 * (inputs * targets).sum(1) |
|
denominator = inputs.sum(-1) + targets.sum(-1) |
|
loss = 1 - (numerator + 1) / (denominator + 1) |
|
if loss_on_multimask: |
|
return loss / num_objects |
|
return loss.sum() / num_objects |
|
|
|
|
|
def sigmoid_focal_loss( |
|
inputs, |
|
targets, |
|
num_objects, |
|
alpha: float = 0.25, |
|
gamma: float = 2, |
|
loss_on_multimask=False, |
|
): |
|
""" |
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
num_objects: Number of objects in the batch |
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
positive vs negative examples. Default = -1 (no weighting). |
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
balance easy vs hard examples. |
|
loss_on_multimask: True if multimask prediction is enabled |
|
Returns: |
|
focal loss tensor |
|
""" |
|
prob = inputs.sigmoid() |
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
p_t = prob * targets + (1 - prob) * (1 - targets) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
loss = alpha_t * loss |
|
|
|
if loss_on_multimask: |
|
|
|
assert loss.dim() == 4 |
|
return loss.flatten(2).mean(-1) / num_objects |
|
return loss.mean(1).sum() / num_objects |
|
|
|
|
|
def iou_loss( |
|
inputs, targets, pred_ious, num_objects, loss_on_multimask=False, use_l1_loss=False |
|
): |
|
""" |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
pred_ious: A float tensor containing the predicted IoUs scores per mask |
|
num_objects: Number of objects in the batch |
|
loss_on_multimask: True if multimask prediction is enabled |
|
use_l1_loss: Whether to use L1 loss is used instead of MSE loss |
|
Returns: |
|
IoU loss tensor |
|
""" |
|
assert inputs.dim() == 4 and targets.dim() == 4 |
|
pred_mask = inputs.flatten(2) > 0 |
|
gt_mask = targets.flatten(2) > 0 |
|
area_i = torch.sum(pred_mask & gt_mask, dim=-1).float() |
|
area_u = torch.sum(pred_mask | gt_mask, dim=-1).float() |
|
actual_ious = area_i / torch.clamp(area_u, min=1.0) |
|
|
|
if use_l1_loss: |
|
loss = F.l1_loss(pred_ious, actual_ious, reduction="none") |
|
else: |
|
loss = F.mse_loss(pred_ious, actual_ious, reduction="none") |
|
if loss_on_multimask: |
|
return loss / num_objects |
|
return loss.sum() / num_objects |
|
|
|
|
|
class MultiStepMultiMasksAndIous(nn.Module): |
|
def __init__( |
|
self, |
|
weight_dict, |
|
focal_alpha=0.25, |
|
focal_gamma=2, |
|
supervise_all_iou=False, |
|
iou_use_l1_loss=False, |
|
pred_obj_scores=False, |
|
focal_gamma_obj_score=0.0, |
|
focal_alpha_obj_score=-1, |
|
): |
|
""" |
|
This class computes the multi-step multi-mask and IoU losses. |
|
Args: |
|
weight_dict: dict containing weights for focal, dice, iou losses |
|
focal_alpha: alpha for sigmoid focal loss |
|
focal_gamma: gamma for sigmoid focal loss |
|
supervise_all_iou: if True, back-prop iou losses for all predicted masks |
|
iou_use_l1_loss: use L1 loss instead of MSE loss for iou |
|
pred_obj_scores: if True, compute loss for object scores |
|
focal_gamma_obj_score: gamma for sigmoid focal loss on object scores |
|
focal_alpha_obj_score: alpha for sigmoid focal loss on object scores |
|
""" |
|
|
|
super().__init__() |
|
self.weight_dict = weight_dict |
|
self.focal_alpha = focal_alpha |
|
self.focal_gamma = focal_gamma |
|
assert "loss_mask" in self.weight_dict |
|
assert "loss_dice" in self.weight_dict |
|
assert "loss_iou" in self.weight_dict |
|
if "loss_class" not in self.weight_dict: |
|
self.weight_dict["loss_class"] = 0.0 |
|
|
|
self.focal_alpha_obj_score = focal_alpha_obj_score |
|
self.focal_gamma_obj_score = focal_gamma_obj_score |
|
self.supervise_all_iou = supervise_all_iou |
|
self.iou_use_l1_loss = iou_use_l1_loss |
|
self.pred_obj_scores = pred_obj_scores |
|
|
|
def forward(self, outs_batch: List[Dict], targets_batch: torch.Tensor): |
|
assert len(outs_batch) == len(targets_batch) |
|
num_objects = torch.tensor( |
|
(targets_batch.shape[1]), device=targets_batch.device, dtype=torch.float |
|
) |
|
if is_dist_avail_and_initialized(): |
|
torch.distributed.all_reduce(num_objects) |
|
num_objects = torch.clamp(num_objects / get_world_size(), min=1).item() |
|
|
|
losses = defaultdict(int) |
|
for outs, targets in zip(outs_batch, targets_batch): |
|
cur_losses = self._forward(outs, targets, num_objects) |
|
for k, v in cur_losses.items(): |
|
losses[k] += v |
|
|
|
return losses |
|
|
|
def _forward(self, outputs: Dict, targets: torch.Tensor, num_objects): |
|
""" |
|
Compute the losses related to the masks: the focal loss and the dice loss. |
|
and also the MAE or MSE loss between predicted IoUs and actual IoUs. |
|
|
|
Here "multistep_pred_multimasks_high_res" is a list of multimasks (tensors |
|
of shape [N, M, H, W], where M could be 1 or larger, corresponding to |
|
one or multiple predicted masks from a click. |
|
|
|
We back-propagate focal, dice losses only on the prediction channel |
|
with the lowest focal+dice loss between predicted mask and ground-truth. |
|
If `supervise_all_iou` is True, we backpropagate ious losses for all predicted masks. |
|
""" |
|
|
|
target_masks = targets.unsqueeze(1).float() |
|
assert target_masks.dim() == 4 |
|
src_masks_list = outputs["multistep_pred_multimasks_high_res"] |
|
ious_list = outputs["multistep_pred_ious"] |
|
object_score_logits_list = outputs["multistep_object_score_logits"] |
|
|
|
assert len(src_masks_list) == len(ious_list) |
|
assert len(object_score_logits_list) == len(ious_list) |
|
|
|
|
|
losses = {"loss_mask": 0, "loss_dice": 0, "loss_iou": 0, "loss_class": 0} |
|
for src_masks, ious, object_score_logits in zip( |
|
src_masks_list, ious_list, object_score_logits_list |
|
): |
|
self._update_losses( |
|
losses, src_masks, target_masks, ious, num_objects, object_score_logits |
|
) |
|
losses[CORE_LOSS_KEY] = self.reduce_loss(losses) |
|
return losses |
|
|
|
def _update_losses( |
|
self, losses, src_masks, target_masks, ious, num_objects, object_score_logits |
|
): |
|
target_masks = target_masks.expand_as(src_masks) |
|
|
|
loss_multimask = sigmoid_focal_loss( |
|
src_masks, |
|
target_masks, |
|
num_objects, |
|
alpha=self.focal_alpha, |
|
gamma=self.focal_gamma, |
|
loss_on_multimask=True, |
|
) |
|
loss_multidice = dice_loss( |
|
src_masks, target_masks, num_objects, loss_on_multimask=True |
|
) |
|
if not self.pred_obj_scores: |
|
loss_class = torch.tensor( |
|
0.0, dtype=loss_multimask.dtype, device=loss_multimask.device |
|
) |
|
target_obj = torch.ones( |
|
loss_multimask.shape[0], |
|
1, |
|
dtype=loss_multimask.dtype, |
|
device=loss_multimask.device, |
|
) |
|
else: |
|
target_obj = torch.any((target_masks[:, 0] > 0).flatten(1), dim=-1)[ |
|
..., None |
|
].float() |
|
loss_class = sigmoid_focal_loss( |
|
object_score_logits, |
|
target_obj, |
|
num_objects, |
|
alpha=self.focal_alpha_obj_score, |
|
gamma=self.focal_gamma_obj_score, |
|
) |
|
|
|
loss_multiiou = iou_loss( |
|
src_masks, |
|
target_masks, |
|
ious, |
|
num_objects, |
|
loss_on_multimask=True, |
|
use_l1_loss=self.iou_use_l1_loss, |
|
) |
|
assert loss_multimask.dim() == 2 |
|
assert loss_multidice.dim() == 2 |
|
assert loss_multiiou.dim() == 2 |
|
if loss_multimask.size(1) > 1: |
|
|
|
loss_combo = ( |
|
loss_multimask * self.weight_dict["loss_mask"] |
|
+ loss_multidice * self.weight_dict["loss_dice"] |
|
) |
|
best_loss_inds = torch.argmin(loss_combo, dim=-1) |
|
batch_inds = torch.arange(loss_combo.size(0), device=loss_combo.device) |
|
loss_mask = loss_multimask[batch_inds, best_loss_inds].unsqueeze(1) |
|
loss_dice = loss_multidice[batch_inds, best_loss_inds].unsqueeze(1) |
|
|
|
|
|
if self.supervise_all_iou: |
|
loss_iou = loss_multiiou.mean(dim=-1).unsqueeze(1) |
|
else: |
|
loss_iou = loss_multiiou[batch_inds, best_loss_inds].unsqueeze(1) |
|
else: |
|
loss_mask = loss_multimask |
|
loss_dice = loss_multidice |
|
loss_iou = loss_multiiou |
|
|
|
|
|
loss_mask = loss_mask * target_obj |
|
loss_dice = loss_dice * target_obj |
|
loss_iou = loss_iou * target_obj |
|
|
|
|
|
losses["loss_mask"] += loss_mask.sum() |
|
losses["loss_dice"] += loss_dice.sum() |
|
losses["loss_iou"] += loss_iou.sum() |
|
losses["loss_class"] += loss_class |
|
|
|
def reduce_loss(self, losses): |
|
reduced_loss = 0.0 |
|
for loss_key, weight in self.weight_dict.items(): |
|
if loss_key not in losses: |
|
raise ValueError(f"{type(self)} doesn't compute {loss_key}") |
|
if weight != 0: |
|
reduced_loss += losses[loss_key] * weight |
|
|
|
return reduced_loss |
|
|