cyun9286's picture
Add application file
f53b39e
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from typing import Dict, List
import torch
import torch.distributed
import torch.nn as nn
import torch.nn.functional as F
from training.trainer import CORE_LOSS_KEY
from training.utils.distributed import get_world_size, is_dist_avail_and_initialized
def dice_loss(inputs, targets, num_objects, loss_on_multimask=False):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
num_objects: Number of objects in the batch
loss_on_multimask: True if multimask prediction is enabled
Returns:
Dice loss tensor
"""
inputs = inputs.sigmoid()
if loss_on_multimask:
# inputs and targets are [N, M, H, W] where M corresponds to multiple predicted masks
assert inputs.dim() == 4 and targets.dim() == 4
# flatten spatial dimension while keeping multimask channel dimension
inputs = inputs.flatten(2)
targets = targets.flatten(2)
numerator = 2 * (inputs * targets).sum(-1)
else:
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
if loss_on_multimask:
return loss / num_objects
return loss.sum() / num_objects
def sigmoid_focal_loss(
inputs,
targets,
num_objects,
alpha: float = 0.25,
gamma: float = 2,
loss_on_multimask=False,
):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
num_objects: Number of objects in the batch
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
loss_on_multimask: True if multimask prediction is enabled
Returns:
focal loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if loss_on_multimask:
# loss is [N, M, H, W] where M corresponds to multiple predicted masks
assert loss.dim() == 4
return loss.flatten(2).mean(-1) / num_objects # average over spatial dims
return loss.mean(1).sum() / num_objects
def iou_loss(
inputs, targets, pred_ious, num_objects, loss_on_multimask=False, use_l1_loss=False
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
pred_ious: A float tensor containing the predicted IoUs scores per mask
num_objects: Number of objects in the batch
loss_on_multimask: True if multimask prediction is enabled
use_l1_loss: Whether to use L1 loss is used instead of MSE loss
Returns:
IoU loss tensor
"""
assert inputs.dim() == 4 and targets.dim() == 4
pred_mask = inputs.flatten(2) > 0
gt_mask = targets.flatten(2) > 0
area_i = torch.sum(pred_mask & gt_mask, dim=-1).float()
area_u = torch.sum(pred_mask | gt_mask, dim=-1).float()
actual_ious = area_i / torch.clamp(area_u, min=1.0)
if use_l1_loss:
loss = F.l1_loss(pred_ious, actual_ious, reduction="none")
else:
loss = F.mse_loss(pred_ious, actual_ious, reduction="none")
if loss_on_multimask:
return loss / num_objects
return loss.sum() / num_objects
class MultiStepMultiMasksAndIous(nn.Module):
def __init__(
self,
weight_dict,
focal_alpha=0.25,
focal_gamma=2,
supervise_all_iou=False,
iou_use_l1_loss=False,
pred_obj_scores=False,
focal_gamma_obj_score=0.0,
focal_alpha_obj_score=-1,
):
"""
This class computes the multi-step multi-mask and IoU losses.
Args:
weight_dict: dict containing weights for focal, dice, iou losses
focal_alpha: alpha for sigmoid focal loss
focal_gamma: gamma for sigmoid focal loss
supervise_all_iou: if True, back-prop iou losses for all predicted masks
iou_use_l1_loss: use L1 loss instead of MSE loss for iou
pred_obj_scores: if True, compute loss for object scores
focal_gamma_obj_score: gamma for sigmoid focal loss on object scores
focal_alpha_obj_score: alpha for sigmoid focal loss on object scores
"""
super().__init__()
self.weight_dict = weight_dict
self.focal_alpha = focal_alpha
self.focal_gamma = focal_gamma
assert "loss_mask" in self.weight_dict
assert "loss_dice" in self.weight_dict
assert "loss_iou" in self.weight_dict
if "loss_class" not in self.weight_dict:
self.weight_dict["loss_class"] = 0.0
self.focal_alpha_obj_score = focal_alpha_obj_score
self.focal_gamma_obj_score = focal_gamma_obj_score
self.supervise_all_iou = supervise_all_iou
self.iou_use_l1_loss = iou_use_l1_loss
self.pred_obj_scores = pred_obj_scores
def forward(self, outs_batch: List[Dict], targets_batch: torch.Tensor):
assert len(outs_batch) == len(targets_batch)
num_objects = torch.tensor(
(targets_batch.shape[1]), device=targets_batch.device, dtype=torch.float
) # Number of objects is fixed within a batch
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_objects)
num_objects = torch.clamp(num_objects / get_world_size(), min=1).item()
losses = defaultdict(int)
for outs, targets in zip(outs_batch, targets_batch):
cur_losses = self._forward(outs, targets, num_objects)
for k, v in cur_losses.items():
losses[k] += v
return losses
def _forward(self, outputs: Dict, targets: torch.Tensor, num_objects):
"""
Compute the losses related to the masks: the focal loss and the dice loss.
and also the MAE or MSE loss between predicted IoUs and actual IoUs.
Here "multistep_pred_multimasks_high_res" is a list of multimasks (tensors
of shape [N, M, H, W], where M could be 1 or larger, corresponding to
one or multiple predicted masks from a click.
We back-propagate focal, dice losses only on the prediction channel
with the lowest focal+dice loss between predicted mask and ground-truth.
If `supervise_all_iou` is True, we backpropagate ious losses for all predicted masks.
"""
target_masks = targets.unsqueeze(1).float()
assert target_masks.dim() == 4 # [N, 1, H, W]
src_masks_list = outputs["multistep_pred_multimasks_high_res"]
ious_list = outputs["multistep_pred_ious"]
object_score_logits_list = outputs["multistep_object_score_logits"]
assert len(src_masks_list) == len(ious_list)
assert len(object_score_logits_list) == len(ious_list)
# accumulate the loss over prediction steps
losses = {"loss_mask": 0, "loss_dice": 0, "loss_iou": 0, "loss_class": 0}
for src_masks, ious, object_score_logits in zip(
src_masks_list, ious_list, object_score_logits_list
):
self._update_losses(
losses, src_masks, target_masks, ious, num_objects, object_score_logits
)
losses[CORE_LOSS_KEY] = self.reduce_loss(losses)
return losses
def _update_losses(
self, losses, src_masks, target_masks, ious, num_objects, object_score_logits
):
target_masks = target_masks.expand_as(src_masks)
# get focal, dice and iou loss on all output masks in a prediction step
loss_multimask = sigmoid_focal_loss(
src_masks,
target_masks,
num_objects,
alpha=self.focal_alpha,
gamma=self.focal_gamma,
loss_on_multimask=True,
)
loss_multidice = dice_loss(
src_masks, target_masks, num_objects, loss_on_multimask=True
)
if not self.pred_obj_scores:
loss_class = torch.tensor(
0.0, dtype=loss_multimask.dtype, device=loss_multimask.device
)
target_obj = torch.ones(
loss_multimask.shape[0],
1,
dtype=loss_multimask.dtype,
device=loss_multimask.device,
)
else:
target_obj = torch.any((target_masks[:, 0] > 0).flatten(1), dim=-1)[
..., None
].float()
loss_class = sigmoid_focal_loss(
object_score_logits,
target_obj,
num_objects,
alpha=self.focal_alpha_obj_score,
gamma=self.focal_gamma_obj_score,
)
loss_multiiou = iou_loss(
src_masks,
target_masks,
ious,
num_objects,
loss_on_multimask=True,
use_l1_loss=self.iou_use_l1_loss,
)
assert loss_multimask.dim() == 2
assert loss_multidice.dim() == 2
assert loss_multiiou.dim() == 2
if loss_multimask.size(1) > 1:
# take the mask indices with the smallest focal + dice loss for back propagation
loss_combo = (
loss_multimask * self.weight_dict["loss_mask"]
+ loss_multidice * self.weight_dict["loss_dice"]
)
best_loss_inds = torch.argmin(loss_combo, dim=-1)
batch_inds = torch.arange(loss_combo.size(0), device=loss_combo.device)
loss_mask = loss_multimask[batch_inds, best_loss_inds].unsqueeze(1)
loss_dice = loss_multidice[batch_inds, best_loss_inds].unsqueeze(1)
# calculate the iou prediction and slot losses only in the index
# with the minimum loss for each mask (to be consistent w/ SAM)
if self.supervise_all_iou:
loss_iou = loss_multiiou.mean(dim=-1).unsqueeze(1)
else:
loss_iou = loss_multiiou[batch_inds, best_loss_inds].unsqueeze(1)
else:
loss_mask = loss_multimask
loss_dice = loss_multidice
loss_iou = loss_multiiou
# backprop focal, dice and iou loss only if obj present
loss_mask = loss_mask * target_obj
loss_dice = loss_dice * target_obj
loss_iou = loss_iou * target_obj
# sum over batch dimension (note that the losses are already divided by num_objects)
losses["loss_mask"] += loss_mask.sum()
losses["loss_dice"] += loss_dice.sum()
losses["loss_iou"] += loss_iou.sum()
losses["loss_class"] += loss_class
def reduce_loss(self, losses):
reduced_loss = 0.0
for loss_key, weight in self.weight_dict.items():
if loss_key not in losses:
raise ValueError(f"{type(self)} doesn't compute {loss_key}")
if weight != 0:
reduced_loss += losses[loss_key] * weight
return reduced_loss