cyun9286 commited on
Commit
25ea20b
·
1 Parent(s): 7233941
Files changed (2) hide show
  1. app.py +9 -3
  2. dust3r/cloud_opt_flow/base_opt.py +2 -0
app.py CHANGED
@@ -103,7 +103,7 @@ def generate_monocular_depth_maps(img_list, depth_prior_name):
103
  prediction = model.infer(image, f_px=f_px)
104
  depth = prediction["depth"].cpu().numpy() # Depth in [m].
105
  focallength_px=prediction["focallength_px"].cpu()
106
- depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_CUBIC)
107
  depth_list.append(depth)
108
  focallength_px_list.append(focallength_px)
109
  #np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
@@ -114,10 +114,9 @@ def generate_monocular_depth_maps(img_list, depth_prior_name):
114
  image = Image.open(image_path)
115
  #print(image.size)
116
  depth = pipe(image)["predicted_depth"].numpy()
117
- print(depth.max(),depth.min())
118
  #depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_CUBIC)
119
  focallength_px = 200
120
- print(depth.max(),depth.min())
121
  depth_list.append(depth)
122
  focallength_px_list.append(focallength_px)
123
  #np.savez_compressed(path_depthanything, depth=depth)
@@ -194,6 +193,13 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad
194
  [os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
195
  os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
196
  os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
 
 
 
 
 
 
 
197
  ]
198
  ],
199
  [
 
103
  prediction = model.infer(image, f_px=f_px)
104
  depth = prediction["depth"].cpu().numpy() # Depth in [m].
105
  focallength_px=prediction["focallength_px"].cpu()
106
+ #depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_CUBIC)
107
  depth_list.append(depth)
108
  focallength_px_list.append(focallength_px)
109
  #np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
 
114
  image = Image.open(image_path)
115
  #print(image.size)
116
  depth = pipe(image)["predicted_depth"].numpy()
117
+ #print(depth.max(),depth.min())
118
  #depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_CUBIC)
119
  focallength_px = 200
 
120
  depth_list.append(depth)
121
  focallength_px_list.append(focallength_px)
122
  #np.savez_compressed(path_depthanything, depth=depth)
 
193
  [os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
194
  os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
195
  os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
196
+ os.path.join(HERE_PATH, 'example/bear/00003.jpg'),
197
+ os.path.join(HERE_PATH, 'example/bear/00004.jpg'),
198
+ os.path.join(HERE_PATH, 'example/bear/00005.jpg'),
199
+ os.path.join(HERE_PATH, 'example/bear/00006.jpg'),
200
+ os.path.join(HERE_PATH, 'example/bear/00007.jpg'),
201
+ os.path.join(HERE_PATH, 'example/bear/00008.jpg'),
202
+ os.path.join(HERE_PATH, 'example/bear/00009.jpg'),
203
  ]
204
  ],
205
  [
dust3r/cloud_opt_flow/base_opt.py CHANGED
@@ -25,6 +25,8 @@ from dust3r.utils.vo_eval import save_trajectory_tum_format
25
  import os
26
  import matplotlib.pyplot as plt
27
  from PIL import Image
 
 
28
 
29
  def c2w_to_tumpose(c2w):
30
  """
 
25
  import os
26
  import matplotlib.pyplot as plt
27
  from PIL import Image
28
+ HERE_PATH = path.normpath(path.dirname(__file__))
29
+ print('**',HERE_PATH)
30
 
31
  def c2w_to_tumpose(c2w):
32
  """