- .gitignore +4 -3
- app.py +25 -12
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
.gitignore
|
|
|
|
1 |
+
*.pth
|
2 |
+
*.pt
|
3 |
+
.gitignore
|
4 |
+
*.glb
|
app.py
CHANGED
@@ -21,14 +21,14 @@ from PIL import Image
|
|
21 |
from dust3r.inference import inference
|
22 |
from dust3r.model import AsymmetricCroCo3DStereo
|
23 |
from dust3r.image_pairs import make_pairs
|
24 |
-
from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks
|
25 |
from dust3r.utils.device import to_numpy
|
26 |
from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode
|
27 |
import matplotlib.pyplot as pl
|
28 |
from transformers import pipeline
|
29 |
from dust3r.utils.viz_demo import convert_scene_output_to_glb
|
30 |
import depth_pro
|
31 |
-
import spaces
|
32 |
from huggingface_hub import hf_hub_download
|
33 |
pl.ion()
|
34 |
|
@@ -95,8 +95,9 @@ def generate_monocular_depth_maps(img_list, depth_prior_name):
|
|
95 |
image = transform(image)
|
96 |
# Run inference.
|
97 |
prediction = model.infer(image, f_px=f_px)
|
98 |
-
depth = prediction["depth"].cpu() # Depth in [m].
|
99 |
focallength_px=prediction["focallength_px"].cpu()
|
|
|
100 |
depth_list.append(depth)
|
101 |
focallength_px_list.append(focallength_px)
|
102 |
#np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
|
@@ -105,30 +106,49 @@ def generate_monocular_depth_maps(img_list, depth_prior_name):
|
|
105 |
for image_path in tqdm(img_list):
|
106 |
#path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz')
|
107 |
image = Image.open(image_path)
|
|
|
108 |
depth = pipe(image)["predicted_depth"].numpy()
|
|
|
109 |
focallength_px = 200
|
110 |
depth_list.append(depth)
|
111 |
focallength_px_list.append(focallength_px)
|
112 |
#np.savez_compressed(path_depthanything, depth=depth)
|
113 |
return depth_list, focallength_px_list
|
114 |
|
115 |
-
@spaces.GPU(duration=180)
|
116 |
def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw):
|
117 |
depth_list, focallength_px_list = generate_monocular_depth_maps(filelist, depth_prior_name)
|
118 |
imgs = load_images(filelist, depth_list, focallength_px_list, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name)
|
119 |
pairs = []
|
120 |
pairs.append((imgs[0], imgs[1]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
|
122 |
mode = GlobalAlignerMode.PairViewer
|
123 |
scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
|
124 |
save_folder = './output'
|
125 |
-
|
|
|
126 |
|
127 |
return outfile
|
128 |
|
129 |
|
130 |
def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw):
|
131 |
return local_get_reconstructed_scene(filelist, cam_size, **kw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
|
134 |
title = "Align3R Demo"
|
@@ -149,13 +169,6 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad
|
|
149 |
depth_prior_name = gradio.Dropdown(
|
150 |
["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
|
151 |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.1, minimum=0.0, maximum=20, step=0.01)
|
152 |
-
|
153 |
-
if depth_prior_name == "Depth Pro":
|
154 |
-
weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt"
|
155 |
-
else:
|
156 |
-
weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt"
|
157 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
158 |
-
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
|
159 |
with gradio.Row():
|
160 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
161 |
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
|
|
|
21 |
from dust3r.inference import inference
|
22 |
from dust3r.model import AsymmetricCroCo3DStereo
|
23 |
from dust3r.image_pairs import make_pairs
|
24 |
+
from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks, resize_numpy_image
|
25 |
from dust3r.utils.device import to_numpy
|
26 |
from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode
|
27 |
import matplotlib.pyplot as pl
|
28 |
from transformers import pipeline
|
29 |
from dust3r.utils.viz_demo import convert_scene_output_to_glb
|
30 |
import depth_pro
|
31 |
+
# import spaces
|
32 |
from huggingface_hub import hf_hub_download
|
33 |
pl.ion()
|
34 |
|
|
|
95 |
image = transform(image)
|
96 |
# Run inference.
|
97 |
prediction = model.infer(image, f_px=f_px)
|
98 |
+
depth = prediction["depth"].cpu().numpy() # Depth in [m].
|
99 |
focallength_px=prediction["focallength_px"].cpu()
|
100 |
+
depth = resize_numpy_image(depth, image.size)
|
101 |
depth_list.append(depth)
|
102 |
focallength_px_list.append(focallength_px)
|
103 |
#np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
|
|
|
106 |
for image_path in tqdm(img_list):
|
107 |
#path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz')
|
108 |
image = Image.open(image_path)
|
109 |
+
#print(image.size)
|
110 |
depth = pipe(image)["predicted_depth"].numpy()
|
111 |
+
depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
|
112 |
focallength_px = 200
|
113 |
depth_list.append(depth)
|
114 |
focallength_px_list.append(focallength_px)
|
115 |
#np.savez_compressed(path_depthanything, depth=depth)
|
116 |
return depth_list, focallength_px_list
|
117 |
|
118 |
+
# @spaces.GPU(duration=180)
|
119 |
def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw):
|
120 |
depth_list, focallength_px_list = generate_monocular_depth_maps(filelist, depth_prior_name)
|
121 |
imgs = load_images(filelist, depth_list, focallength_px_list, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name)
|
122 |
pairs = []
|
123 |
pairs.append((imgs[0], imgs[1]))
|
124 |
+
pairs.append((imgs[1], imgs[0]))
|
125 |
+
if depth_prior_name == "Depth Pro":
|
126 |
+
weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt"
|
127 |
+
else:
|
128 |
+
weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt"
|
129 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
130 |
+
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
|
131 |
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
|
132 |
mode = GlobalAlignerMode.PairViewer
|
133 |
scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
|
134 |
save_folder = './output'
|
135 |
+
os.makedirs(save_folder, exist_ok=True)
|
136 |
+
outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size)
|
137 |
|
138 |
return outfile
|
139 |
|
140 |
|
141 |
def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw):
|
142 |
return local_get_reconstructed_scene(filelist, cam_size, **kw)
|
143 |
+
# filelist = ['/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00000.jpg', '/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00010.jpg']
|
144 |
+
# min_conf_thr = 1.1
|
145 |
+
# as_pointcloud = True
|
146 |
+
# mask_sky = False
|
147 |
+
# clean_depth = True
|
148 |
+
# transparent_cams = False
|
149 |
+
# cam_size = 0.2
|
150 |
+
# depth_prior_name = 'Depth Anything V2'
|
151 |
+
# local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name)
|
152 |
|
153 |
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
|
154 |
title = "Align3R Demo"
|
|
|
169 |
depth_prior_name = gradio.Dropdown(
|
170 |
["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
|
171 |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.1, minimum=0.0, maximum=20, step=0.01)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
with gradio.Row():
|
173 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
174 |
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
|