# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import glob import json import os import numpy as np import pandas as pd import torch from PIL import Image as PILImage try: from pycocotools import mask as mask_utils except: pass class JSONSegmentLoader: def __init__(self, video_json_path, ann_every=1, frames_fps=24, valid_obj_ids=None): # Annotations in the json are provided every ann_every th frame self.ann_every = ann_every # Ids of the objects to consider when sampling this video self.valid_obj_ids = valid_obj_ids with open(video_json_path, "r") as f: data = json.load(f) if isinstance(data, list): self.frame_annots = data elif isinstance(data, dict): masklet_field_name = "masklet" if "masklet" in data else "masks" self.frame_annots = data[masklet_field_name] if "fps" in data: if isinstance(data["fps"], list): annotations_fps = int(data["fps"][0]) else: annotations_fps = int(data["fps"]) assert frames_fps % annotations_fps == 0 self.ann_every = frames_fps // annotations_fps else: raise NotImplementedError def load(self, frame_id, obj_ids=None): assert frame_id % self.ann_every == 0 rle_mask = self.frame_annots[frame_id // self.ann_every] valid_objs_ids = set(range(len(rle_mask))) if self.valid_obj_ids is not None: # Remove the masklets that have been filtered out for this video valid_objs_ids &= set(self.valid_obj_ids) if obj_ids is not None: # Only keep the objects that have been sampled valid_objs_ids &= set(obj_ids) valid_objs_ids = sorted(list(valid_objs_ids)) # Construct rle_masks_filtered that only contains the rle masks we are interested in id_2_idx = {} rle_mask_filtered = [] for obj_id in valid_objs_ids: if rle_mask[obj_id] is not None: id_2_idx[obj_id] = len(rle_mask_filtered) rle_mask_filtered.append(rle_mask[obj_id]) else: id_2_idx[obj_id] = None # Decode the masks raw_segments = torch.from_numpy(mask_utils.decode(rle_mask_filtered)).permute( 2, 0, 1 ) # (num_obj, h, w) segments = {} for obj_id in valid_objs_ids: if id_2_idx[obj_id] is None: segments[obj_id] = None else: idx = id_2_idx[obj_id] segments[obj_id] = raw_segments[idx] return segments def get_valid_obj_frames_ids(self, num_frames_min=None): # For each object, find all the frames with a valid (not None) mask num_objects = len(self.frame_annots[0]) # The result dict associates each obj_id with the id of its valid frames res = {obj_id: [] for obj_id in range(num_objects)} for annot_idx, annot in enumerate(self.frame_annots): for obj_id in range(num_objects): if annot[obj_id] is not None: res[obj_id].append(int(annot_idx * self.ann_every)) if num_frames_min is not None: # Remove masklets that have less than num_frames_min valid masks for obj_id, valid_frames in list(res.items()): if len(valid_frames) < num_frames_min: res.pop(obj_id) return res class PalettisedPNGSegmentLoader: def __init__(self, video_png_root): """ SegmentLoader for datasets with masks stored as palettised PNGs. video_png_root: the folder contains all the masks stored in png """ self.video_png_root = video_png_root # build a mapping from frame id to their PNG mask path # note that in some datasets, the PNG paths could have more # than 5 digits, e.g. "00000000.png" instead of "00000.png" png_filenames = os.listdir(self.video_png_root) self.frame_id_to_png_filename = {} for filename in png_filenames: frame_id, _ = os.path.splitext(filename) self.frame_id_to_png_filename[int(frame_id)] = filename def load(self, frame_id): """ load the single palettised mask from the disk (path: f'{self.video_png_root}/{frame_id:05d}.png') Args: frame_id: int, define the mask path Return: binary_segments: dict """ # check the path mask_path = os.path.join( self.video_png_root, self.frame_id_to_png_filename[frame_id] ) # load the mask masks = PILImage.open(mask_path).convert("P") masks = np.array(masks) object_id = pd.unique(masks.flatten()) object_id = object_id[object_id != 0] # remove background (0) # convert into N binary segmentation masks binary_segments = {} for i in object_id: bs = masks == i binary_segments[i] = torch.from_numpy(bs) return binary_segments def __len__(self): return class MultiplePNGSegmentLoader: def __init__(self, video_png_root, single_object_mode=False): """ video_png_root: the folder contains all the masks stored in png single_object_mode: whether to load only a single object at a time """ self.video_png_root = video_png_root self.single_object_mode = single_object_mode # read a mask to know the resolution of the video if self.single_object_mode: tmp_mask_path = glob.glob(os.path.join(video_png_root, "*.png"))[0] else: tmp_mask_path = glob.glob(os.path.join(video_png_root, "*", "*.png"))[0] tmp_mask = np.array(PILImage.open(tmp_mask_path)) self.H = tmp_mask.shape[0] self.W = tmp_mask.shape[1] if self.single_object_mode: self.obj_id = ( int(video_png_root.split("/")[-1]) + 1 ) # offset by 1 as bg is 0 else: self.obj_id = None def load(self, frame_id): if self.single_object_mode: return self._load_single_png(frame_id) else: return self._load_multiple_pngs(frame_id) def _load_single_png(self, frame_id): """ load single png from the disk (path: f'{self.obj_id}/{frame_id:05d}.png') Args: frame_id: int, define the mask path Return: binary_segments: dict """ mask_path = os.path.join(self.video_png_root, f"{frame_id:05d}.png") binary_segments = {} if os.path.exists(mask_path): mask = np.array(PILImage.open(mask_path)) else: # if png doesn't exist, empty mask mask = np.zeros((self.H, self.W), dtype=bool) binary_segments[self.obj_id] = torch.from_numpy(mask > 0) return binary_segments def _load_multiple_pngs(self, frame_id): """ load multiple png masks from the disk (path: f'{obj_id}/{frame_id:05d}.png') Args: frame_id: int, define the mask path Return: binary_segments: dict """ # get the path all_objects = sorted(glob.glob(os.path.join(self.video_png_root, "*"))) num_objects = len(all_objects) assert num_objects > 0 # load the masks binary_segments = {} for obj_folder in all_objects: # obj_folder is {video_name}/{obj_id}, obj_id is specified by the name of the folder obj_id = int(obj_folder.split("/")[-1]) obj_id = obj_id + 1 # offset 1 as bg is 0 mask_path = os.path.join(obj_folder, f"{frame_id:05d}.png") if os.path.exists(mask_path): mask = np.array(PILImage.open(mask_path)) else: mask = np.zeros((self.H, self.W), dtype=bool) binary_segments[obj_id] = torch.from_numpy(mask > 0) return binary_segments def __len__(self): return class LazySegments: """ Only decodes segments that are actually used. """ def __init__(self): self.segments = {} self.cache = {} def __setitem__(self, key, item): self.segments[key] = item def __getitem__(self, key): if key in self.cache: return self.cache[key] rle = self.segments[key] mask = torch.from_numpy(mask_utils.decode([rle])).permute(2, 0, 1)[0] self.cache[key] = mask return mask def __contains__(self, key): return key in self.segments def __len__(self): return len(self.segments) def keys(self): return self.segments.keys() class SA1BSegmentLoader: def __init__( self, video_mask_path, mask_area_frac_thresh=1.1, video_frame_path=None, uncertain_iou=-1, ): with open(video_mask_path, "r") as f: self.frame_annots = json.load(f) if mask_area_frac_thresh <= 1.0: # Lazily read frame orig_w, orig_h = PILImage.open(video_frame_path).size area = orig_w * orig_h self.frame_annots = self.frame_annots["annotations"] rle_masks = [] for frame_annot in self.frame_annots: if not frame_annot["area"] > 0: continue if ("uncertain_iou" in frame_annot) and ( frame_annot["uncertain_iou"] < uncertain_iou ): # uncertain_iou is stability score continue if ( mask_area_frac_thresh <= 1.0 and (frame_annot["area"] / area) >= mask_area_frac_thresh ): continue rle_masks.append(frame_annot["segmentation"]) self.segments = LazySegments() for i, rle in enumerate(rle_masks): self.segments[i] = rle def load(self, frame_idx): return self.segments