# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # utilities needed for the inference # -------------------------------------------------------- import tqdm import torch from dust3r.utils.device import to_cpu, collate_with_cat from dust3r.utils.misc import invalid_to_nans from dust3r.utils.geometry import depthmap_to_pts3d, geotrf def _interleave_imgs(img1, img2): res = {} for key, value1 in img1.items(): value2 = img2[key] if isinstance(value1, torch.Tensor): value = torch.stack((value1, value2), dim=1).flatten(0, 1) else: value = [x for pair in zip(value1, value2) for x in pair] res[key] = value return res def make_batch_symmetric(batch): view1, view2 = batch view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) return view1, view2 def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None): view1, view2 = batch ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng']) for view in batch: for name in view.keys(): # pseudo_focal if name in ignore_keys: continue view[name] = view[name].to(device, non_blocking=True) if symmetrize_batch: view1, view2 = make_batch_symmetric(batch) with torch.cuda.amp.autocast(enabled=bool(use_amp)): pred1, pred2 = model(view1, view2) # loss is supposed to be symmetric with torch.cuda.amp.autocast(enabled=False): loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) return result[ret] if ret else result @torch.no_grad() def inference(pairs, model, device, batch_size=8, verbose=True): if verbose: print(f'>> Inference with model on {len(pairs)} image pairs') result = [] # first, check if all images have the same size multiple_shapes = not (check_if_same_size(pairs)) if multiple_shapes: # force bs=1 batch_size = 1 for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): res = loss_of_one_batch(collate_with_cat(pairs[i:i + batch_size]), model, None, device) result.append(to_cpu(res)) result = collate_with_cat(result, lists=multiple_shapes) return result def check_if_same_size(pairs): shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs] shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs] return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2) def get_pred_pts3d(gt, pred, use_pose=False): if 'depth' in pred and 'pseudo_focal' in pred: try: pp = gt['camera_intrinsics'][..., :2, 2] except KeyError: pp = None pts3d = depthmap_to_pts3d(**pred, pp=pp) elif 'pts3d' in pred: # pts3d from my camera pts3d = pred['pts3d'] elif 'pts3d_in_other_view' in pred: # pts3d from the other camera, already transformed assert use_pose is True return pred['pts3d_in_other_view'] # return! if use_pose: camera_pose = pred.get('camera_pose') assert camera_pose is not None pts3d = geotrf(camera_pose, pts3d) return pts3d def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None): assert gt_pts1.ndim == pr_pts1.ndim == 4 assert gt_pts1.shape == pr_pts1.shape if gt_pts2 is not None: assert gt_pts2.ndim == pr_pts2.ndim == 4 assert gt_pts2.shape == pr_pts2.shape # concat the pointcloud nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1 all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 dot_gt_pr = (all_pr * all_gt).sum(dim=-1) dot_gt_gt = all_gt.square().sum(dim=-1) if fit_mode.startswith('avg'): # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1) scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) elif fit_mode.startswith('median'): scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values elif fit_mode.startswith('weiszfeld'): # init scaling with l2 closed form scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) # iterative re-weighted least-squares for iter in range(10): # re-weighting by inverse of distance dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) # print(dis.nanmean(-1)) w = dis.clip_(min=1e-8).reciprocal() # update the scaling with the new weights scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) else: raise ValueError(f'bad {fit_mode=}') if fit_mode.endswith('stop_grad'): scaling = scaling.detach() scaling = scaling.clip(min=1e-3) # assert scaling.isfinite().all(), bb() return scaling