# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import glob import logging import os from dataclasses import dataclass from typing import List, Optional import pandas as pd import torch from iopath.common.file_io import g_pathmgr from omegaconf.listconfig import ListConfig from training.dataset.vos_segment_loader import ( JSONSegmentLoader, MultiplePNGSegmentLoader, PalettisedPNGSegmentLoader, SA1BSegmentLoader, ) @dataclass class VOSFrame: frame_idx: int image_path: str data: Optional[torch.Tensor] = None is_conditioning_only: Optional[bool] = False @dataclass class VOSVideo: video_name: str video_id: int frames: List[VOSFrame] def __len__(self): return len(self.frames) class VOSRawDataset: def __init__(self): pass def get_video(self, idx): raise NotImplementedError() class PNGRawDataset(VOSRawDataset): def __init__( self, img_folder, gt_folder, file_list_txt=None, excluded_videos_list_txt=None, sample_rate=1, is_palette=True, single_object_mode=False, truncate_video=-1, frames_sampling_mult=False, ): self.img_folder = img_folder self.gt_folder = gt_folder self.sample_rate = sample_rate self.is_palette = is_palette self.single_object_mode = single_object_mode self.truncate_video = truncate_video # Read the subset defined in file_list_txt if file_list_txt is not None: with g_pathmgr.open(file_list_txt, "r") as f: subset = [os.path.splitext(line.strip())[0] for line in f] else: subset = os.listdir(self.img_folder) # Read and process excluded files if provided if excluded_videos_list_txt is not None: with g_pathmgr.open(excluded_videos_list_txt, "r") as f: excluded_files = [os.path.splitext(line.strip())[0] for line in f] else: excluded_files = [] # Check if it's not in excluded_files self.video_names = sorted( [video_name for video_name in subset if video_name not in excluded_files] ) if self.single_object_mode: # single object mode self.video_names = sorted( [ os.path.join(video_name, obj) for video_name in self.video_names for obj in os.listdir(os.path.join(self.gt_folder, video_name)) ] ) if frames_sampling_mult: video_names_mult = [] for video_name in self.video_names: num_frames = len(os.listdir(os.path.join(self.img_folder, video_name))) video_names_mult.extend([video_name] * num_frames) self.video_names = video_names_mult def get_video(self, idx): """ Given a VOSVideo object, return the mask tensors. """ video_name = self.video_names[idx] if self.single_object_mode: video_frame_root = os.path.join( self.img_folder, os.path.dirname(video_name) ) else: video_frame_root = os.path.join(self.img_folder, video_name) video_mask_root = os.path.join(self.gt_folder, video_name) if self.is_palette: segment_loader = PalettisedPNGSegmentLoader(video_mask_root) else: segment_loader = MultiplePNGSegmentLoader( video_mask_root, self.single_object_mode ) all_frames = sorted(glob.glob(os.path.join(video_frame_root, "*.jpg"))) if self.truncate_video > 0: all_frames = all_frames[: self.truncate_video] frames = [] for _, fpath in enumerate(all_frames[:: self.sample_rate]): fid = int(os.path.basename(fpath).split(".")[0]) frames.append(VOSFrame(fid, image_path=fpath)) video = VOSVideo(video_name, idx, frames) return video, segment_loader def __len__(self): return len(self.video_names) class SA1BRawDataset(VOSRawDataset): def __init__( self, img_folder, gt_folder, file_list_txt=None, excluded_videos_list_txt=None, num_frames=1, mask_area_frac_thresh=1.1, # no filtering by default uncertain_iou=-1, # no filtering by default ): self.img_folder = img_folder self.gt_folder = gt_folder self.num_frames = num_frames self.mask_area_frac_thresh = mask_area_frac_thresh self.uncertain_iou = uncertain_iou # stability score # Read the subset defined in file_list_txt if file_list_txt is not None: with g_pathmgr.open(file_list_txt, "r") as f: subset = [os.path.splitext(line.strip())[0] for line in f] else: subset = os.listdir(self.img_folder) subset = [ path.split(".")[0] for path in subset if path.endswith(".jpg") ] # remove extension # Read and process excluded files if provided if excluded_videos_list_txt is not None: with g_pathmgr.open(excluded_videos_list_txt, "r") as f: excluded_files = [os.path.splitext(line.strip())[0] for line in f] else: excluded_files = [] # Check if it's not in excluded_files and it exists self.video_names = [ video_name for video_name in subset if video_name not in excluded_files ] def get_video(self, idx): """ Given a VOSVideo object, return the mask tensors. """ video_name = self.video_names[idx] video_frame_path = os.path.join(self.img_folder, video_name + ".jpg") video_mask_path = os.path.join(self.gt_folder, video_name + ".json") segment_loader = SA1BSegmentLoader( video_mask_path, mask_area_frac_thresh=self.mask_area_frac_thresh, video_frame_path=video_frame_path, uncertain_iou=self.uncertain_iou, ) frames = [] for frame_idx in range(self.num_frames): frames.append(VOSFrame(frame_idx, image_path=video_frame_path)) video_name = video_name.split("_")[-1] # filename is sa_{int} # video id needs to be image_id to be able to load correct annotation file during eval video = VOSVideo(video_name, int(video_name), frames) return video, segment_loader def __len__(self): return len(self.video_names) class JSONRawDataset(VOSRawDataset): """ Dataset where the annotation in the format of SA-V json files """ def __init__( self, img_folder, gt_folder, file_list_txt=None, excluded_videos_list_txt=None, sample_rate=1, rm_unannotated=True, ann_every=1, frames_fps=24, ): self.gt_folder = gt_folder self.img_folder = img_folder self.sample_rate = sample_rate self.rm_unannotated = rm_unannotated self.ann_every = ann_every self.frames_fps = frames_fps # Read and process excluded files if provided excluded_files = [] if excluded_videos_list_txt is not None: if isinstance(excluded_videos_list_txt, str): excluded_videos_lists = [excluded_videos_list_txt] elif isinstance(excluded_videos_list_txt, ListConfig): excluded_videos_lists = list(excluded_videos_list_txt) else: raise NotImplementedError for excluded_videos_list_txt in excluded_videos_lists: with open(excluded_videos_list_txt, "r") as f: excluded_files.extend( [os.path.splitext(line.strip())[0] for line in f] ) excluded_files = set(excluded_files) # Read the subset defined in file_list_txt if file_list_txt is not None: with g_pathmgr.open(file_list_txt, "r") as f: subset = [os.path.splitext(line.strip())[0] for line in f] else: subset = os.listdir(self.img_folder) self.video_names = sorted( [video_name for video_name in subset if video_name not in excluded_files] ) def get_video(self, video_idx): """ Given a VOSVideo object, return the mask tensors. """ video_name = self.video_names[video_idx] video_json_path = os.path.join(self.gt_folder, video_name + "_manual.json") segment_loader = JSONSegmentLoader( video_json_path=video_json_path, ann_every=self.ann_every, frames_fps=self.frames_fps, ) frame_ids = [ int(os.path.splitext(frame_name)[0]) for frame_name in sorted( os.listdir(os.path.join(self.img_folder, video_name)) ) ] frames = [ VOSFrame( frame_id, image_path=os.path.join( self.img_folder, f"{video_name}/%05d.jpg" % (frame_id) ), ) for frame_id in frame_ids[:: self.sample_rate] ] if self.rm_unannotated: # Eliminate the frames that have not been annotated valid_frame_ids = [ i * segment_loader.ann_every for i, annot in enumerate(segment_loader.frame_annots) if annot is not None and None not in annot ] frames = [f for f in frames if f.frame_idx in valid_frame_ids] video = VOSVideo(video_name, video_idx, frames) return video, segment_loader def __len__(self): return len(self.video_names)