import torch import torch.nn as nn import torch.nn.functional as F import torch import math from torch.nn import Module, Dropout ### Gradient Clipping and Zeroing Operations ### GRAD_CLIP = 0.1 class GradClip(torch.autograd.Function): @staticmethod def forward(ctx, x): return x @staticmethod def backward(ctx, grad_x): grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x) return grad_x.clamp(min=-0.01, max=0.01) class GradientClip(nn.Module): def __init__(self): super(GradientClip, self).__init__() def forward(self, x): return GradClip.apply(x) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvNextBlock(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, output_dim, layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * output_dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * output_dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.final = nn.Conv2d(dim, output_dim, kernel_size=1, padding=0) def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = self.final(input + x) return x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution without padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1) class BasicBlock(nn.Module): def __init__(self, in_planes, planes, stride=1, norm_layer=nn.BatchNorm2d): super().__init__() # self.sparse = sparse self.conv1 = conv3x3(in_planes, planes, stride) self.conv2 = conv3x3(planes, planes) self.bn1 = norm_layer(planes) self.bn2 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) if stride == 1 and in_planes == planes: self.downsample = None else: self.bn3 = norm_layer(planes) self.downsample = nn.Sequential( conv1x1(in_planes, planes, stride=stride), self.bn3 ) def forward(self, x): y = x y = self.relu(self.bn1(self.conv1(y))) y = self.relu(self.bn2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x+y)