# Copyright (C) 2022-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # -------------------------------------------------------- # Losses, metrics per batch, metrics per dataset # -------------------------------------------------------- import torch from torch import nn import torch.nn.functional as F def _get_gtnorm(gt): if gt.size(1)==1: # stereo return gt # flow return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW ############ losses without confidence class L1Loss(nn.Module): def __init__(self, max_gtnorm=None): super().__init__() self.max_gtnorm = max_gtnorm self.with_conf = False def _error(self, gt, predictions): return torch.abs(gt-predictions) def forward(self, predictions, gt, inspect=False): mask = torch.isfinite(gt) if self.max_gtnorm is not None: mask *= _get_gtnorm(gt).expand(-1,gt.size(1),-1,-1)<self.max_gtnorm if inspect: return self._error(gt, predictions) return self._error(gt[mask],predictions[mask]).mean() ############## losses with confience ## there are several parametrizations class LaplacianLoss(nn.Module): # used for CroCo-Stereo on ETH3D, d'=exp(d) def __init__(self, max_gtnorm=None): super().__init__() self.max_gtnorm = max_gtnorm self.with_conf = True def forward(self, predictions, gt, conf): mask = torch.isfinite(gt) mask = mask[:,0,:,:] if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm conf = conf.squeeze(1) return ( torch.abs(gt-predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + conf[mask] ).mean()# + torch.log(2) => which is a constant class LaplacianLossBounded(nn.Module): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b def __init__(self, max_gtnorm=10000., a=0.25, b=4.): super().__init__() self.max_gtnorm = max_gtnorm self.with_conf = True self.a, self.b = a, b def forward(self, predictions, gt, conf): mask = torch.isfinite(gt) mask = mask[:,0,:,:] if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm conf = conf.squeeze(1) conf = (self.b - self.a) * torch.sigmoid(conf) + self.a return ( torch.abs(gt-predictions).sum(dim=1)[mask] / conf[mask] + torch.log(conf)[mask] ).mean()# + torch.log(2) => which is a constant class LaplacianLossBounded2(nn.Module): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b def __init__(self, max_gtnorm=None, a=3.0, b=3.0): super().__init__() self.max_gtnorm = max_gtnorm self.with_conf = True self.a, self.b = a, b def forward(self, predictions, gt, conf): mask = torch.isfinite(gt) mask = mask[:,0,:,:] if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:]<self.max_gtnorm conf = conf.squeeze(1) conf = 2 * self.a * (torch.sigmoid(conf / self.b) - 0.5 ) return ( torch.abs(gt-predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + conf[mask] ).mean()# + torch.log(2) => which is a constant ############## metrics per batch class StereoMetrics(nn.Module): def __init__(self, do_quantile=False): super().__init__() self.bad_ths = [0.5,1,2,3] self.do_quantile = do_quantile def forward(self, predictions, gt): B = predictions.size(0) metrics = {} gtcopy = gt.clone() mask = torch.isfinite(gtcopy) gtcopy[~mask] = 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0 Npx = mask.view(B,-1).sum(dim=1) L1error = (torch.abs(gtcopy-predictions)*mask).view(B,-1) L2error = (torch.square(gtcopy-predictions)*mask).view(B,-1) # avgerr metrics['avgerr'] = torch.mean(L1error.sum(dim=1)/Npx ) # rmse metrics['rmse'] = torch.sqrt(L2error.sum(dim=1)/Npx).mean(dim=0) # err > t for t in [0.5,1,2,3] for ths in self.bad_ths: metrics['bad@{:.1f}'.format(ths)] = (((L1error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 return metrics class FlowMetrics(nn.Module): def __init__(self): super().__init__() self.bad_ths = [1,3,5] def forward(self, predictions, gt): B = predictions.size(0) metrics = {} mask = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite Npx = mask.view(B,-1).sum(dim=1) gtcopy = gt.clone() # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored gtcopy[:,0,:,:][~mask] = 999999.0 gtcopy[:,1,:,:][~mask] = 999999.0 L1error = (torch.abs(gtcopy-predictions).sum(dim=1)*mask).view(B,-1) L2error = (torch.sqrt(torch.sum(torch.square(gtcopy-predictions),dim=1))*mask).view(B,-1) metrics['L1err'] = torch.mean(L1error.sum(dim=1)/Npx ) metrics['EPE'] = torch.mean(L2error.sum(dim=1)/Npx ) for ths in self.bad_ths: metrics['bad@{:.1f}'.format(ths)] = (((L2error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 return metrics ############## metrics per dataset ## we update the average and maintain the number of pixels while adding data batch per batch ## at the beggining, call reset() ## after each batch, call add_batch(...) ## at the end: call get_results() class StereoDatasetMetrics(nn.Module): def __init__(self): super().__init__() self.bad_ths = [0.5,1,2,3] def reset(self): self.agg_N = 0 # number of pixels so far self.agg_L1err = torch.tensor(0.0) # L1 error so far self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels self._metrics = None def add_batch(self, predictions, gt): assert predictions.size(1)==1, predictions.size() assert gt.size(1)==1, gt.size() if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... L1err = torch.minimum( torch.minimum( torch.minimum( torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) valid = torch.isfinite(L1err) else: valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite L1err = torch.sum(torch.abs(gt-predictions),dim=1) N = valid.sum() Nnew = self.agg_N + N self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew self.agg_N = Nnew for i,th in enumerate(self.bad_ths): self.agg_Nbad[i] += (L1err[valid]>th).sum().cpu() def _compute_metrics(self): if self._metrics is not None: return out = {} out['L1err'] = self.agg_L1err.item() for i,th in enumerate(self.bad_ths): out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0 self._metrics = out def get_results(self): self._compute_metrics() # to avoid recompute them multiple times return self._metrics class FlowDatasetMetrics(nn.Module): def __init__(self): super().__init__() self.bad_ths = [0.5,1,3,5] self.speed_ths = [(0,10),(10,40),(40,torch.inf)] def reset(self): self.agg_N = 0 # number of pixels so far self.agg_L1err = torch.tensor(0.0) # L1 error so far self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels self.agg_EPEspeed = [torch.tensor(0.0) for _ in self.speed_ths] # EPE per speed bin so far self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far self._metrics = None self.pairname_results = {} def add_batch(self, predictions, gt): assert predictions.size(1)==2, predictions.size() assert gt.size(1)==2, gt.size() if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... L1err = torch.minimum( torch.minimum( torch.minimum( torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) L2err = torch.minimum( torch.minimum( torch.minimum( torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]-predictions),dim=1)), torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]-predictions),dim=1))), torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]-predictions),dim=1))), torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]-predictions),dim=1))) valid = torch.isfinite(L1err) gtspeed = (torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]),dim=1)) +\ torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]),dim=1)) ) / 4.0 # let's just average them else: valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite L1err = torch.sum(torch.abs(gt-predictions),dim=1) L2err = torch.sqrt(torch.sum(torch.square(gt-predictions),dim=1)) gtspeed = torch.sqrt(torch.sum(torch.square(gt),dim=1)) N = valid.sum() Nnew = self.agg_N + N self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew self.agg_L2err = float(self.agg_N)/Nnew * self.agg_L2err + L2err[valid].mean().cpu() * float(N)/Nnew self.agg_N = Nnew for i,th in enumerate(self.bad_ths): self.agg_Nbad[i] += (L2err[valid]>th).sum().cpu() for i,(th1,th2) in enumerate(self.speed_ths): vv = (gtspeed[valid]>=th1) * (gtspeed[valid]<th2) iNspeed = vv.sum() if iNspeed==0: continue iNnew = self.agg_Nspeed[i] + iNspeed self.agg_EPEspeed[i] = float(self.agg_Nspeed[i]) / iNnew * self.agg_EPEspeed[i] + float(iNspeed) / iNnew * L2err[valid][vv].mean().cpu() self.agg_Nspeed[i] = iNnew def _compute_metrics(self): if self._metrics is not None: return out = {} out['L1err'] = self.agg_L1err.item() out['EPE'] = self.agg_L2err.item() for i,th in enumerate(self.bad_ths): out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0 for i,(th1,th2) in enumerate(self.speed_ths): out['s{:d}{:s}'.format(th1, '-'+str(th2) if th2<torch.inf else '+')] = self.agg_EPEspeed[i].item() self._metrics = out def get_results(self): self._compute_metrics() # to avoid recompute them multiple times return self._metrics