# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # PatchEmbed implementation for DUST3R, # in particular ManyAR_PatchEmbed that Handle images with non-square aspect ratio # -------------------------------------------------------- import torch import dust3r.utils.path_to_croco # noqa: F401 from models.blocks import PatchEmbed # noqa def get_patch_embed(patch_embed_cls, img_size, patch_size, enc_embed_dim): assert patch_embed_cls in ['PatchEmbedDust3R', 'ManyAR_PatchEmbed'] patch_embed = eval(patch_embed_cls)(img_size, patch_size, 3, enc_embed_dim) return patch_embed class PatchEmbedDust3R(PatchEmbed): def forward(self, x, **kw): B, C, H, W = x.shape assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." x = self.proj(x) pos = self.position_getter(B, x.size(2), x.size(3), x.device) if self.flatten: x = x.flatten(2).transpose(1, 2).contiguous() # BCHW -> BNC x = self.norm(x) return x, pos class ManyAR_PatchEmbed (PatchEmbed): """ Handle images with non-square aspect ratio. All images in the same batch have the same aspect ratio. true_shape = [(height, width) ...] indicates the actual shape of each image. """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): self.embed_dim = embed_dim super().__init__(img_size, patch_size, in_chans, embed_dim, norm_layer, flatten) def forward(self, img, true_shape): B, C, H, W = img.shape assert W >= H, f'img should be in landscape mode, but got {W=} {H=}' assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." assert true_shape.shape == (B, 2), f"true_shape has the wrong shape={true_shape.shape}" # size expressed in tokens W //= self.patch_size[0] H //= self.patch_size[1] n_tokens = H * W height, width = true_shape.T is_landscape = (width >= height) is_portrait = ~is_landscape # allocate result x = img.new_zeros((B, n_tokens, self.embed_dim)) pos = img.new_zeros((B, n_tokens, 2), dtype=torch.int64) # linear projection, transposed if necessary x[is_landscape] = self.proj(img[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2).float() x[is_portrait] = self.proj(img[is_portrait].swapaxes(-1, -2)).permute(0, 2, 3, 1).flatten(1, 2).float() pos[is_landscape] = self.position_getter(1, H, W, pos.device) pos[is_portrait] = self.position_getter(1, W, H, pos.device) x = self.norm(x) return x, pos