# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from PIL import Image as PILImage from tensordict import tensorclass @tensorclass class BatchedVideoMetaData: """ This class represents metadata about a batch of videos. Attributes: unique_objects_identifier: A tensor of shape Bx3 containing unique identifiers for each object in the batch. Index consists of (video_id, obj_id, frame_id) frame_orig_size: A tensor of shape Bx2 containing the original size of each frame in the batch. """ unique_objects_identifier: torch.LongTensor frame_orig_size: torch.LongTensor @tensorclass class BatchedVideoDatapoint: """ This class represents a batch of videos with associated annotations and metadata. Attributes: img_batch: A [TxBxCxHxW] tensor containing the image data for each frame in the batch, where T is the number of frames per video, and B is the number of videos in the batch. obj_to_frame_idx: A [TxOx2] tensor containing the image_batch index which the object belongs to. O is the number of objects in the batch. masks: A [TxOxHxW] tensor containing binary masks for each object in the batch. metadata: An instance of BatchedVideoMetaData containing metadata about the batch. dict_key: A string key used to identify the batch. """ img_batch: torch.FloatTensor obj_to_frame_idx: torch.IntTensor masks: torch.BoolTensor metadata: BatchedVideoMetaData dict_key: str def pin_memory(self, device=None): return self.apply(torch.Tensor.pin_memory, device=device) @property def num_frames(self) -> int: """ Returns the number of frames per video. """ return self.batch_size[0] @property def num_videos(self) -> int: """ Returns the number of videos in the batch. """ return self.img_batch.shape[1] @property def flat_obj_to_img_idx(self) -> torch.IntTensor: """ Returns a flattened tensor containing the object to img index. The flat index can be used to access a flattened img_batch of shape [(T*B)xCxHxW] """ frame_idx, video_idx = self.obj_to_frame_idx.unbind(dim=-1) flat_idx = video_idx * self.num_frames + frame_idx return flat_idx @property def flat_img_batch(self) -> torch.FloatTensor: """ Returns a flattened img_batch_tensor of shape [(B*T)xCxHxW] """ return self.img_batch.transpose(0, 1).flatten(0, 1) @dataclass class Object: # Id of the object in the media object_id: int # Index of the frame in the media (0 if single image) frame_index: int segment: Union[torch.Tensor, dict] # RLE dict or binary mask @dataclass class Frame: data: Union[torch.Tensor, PILImage.Image] objects: List[Object] @dataclass class VideoDatapoint: """Refers to an image/video and all its annotations""" frames: List[Frame] video_id: int size: Tuple[int, int] def collate_fn( batch: List[VideoDatapoint], dict_key, ) -> BatchedVideoDatapoint: """ Args: batch: A list of VideoDatapoint instances. dict_key (str): A string key used to identify the batch. """ img_batch = [] for video in batch: img_batch += [torch.stack([frame.data for frame in video.frames], dim=0)] img_batch = torch.stack(img_batch, dim=0).permute((1, 0, 2, 3, 4)) T = img_batch.shape[0] # Prepare data structures for sequential processing. Per-frame processing but batched across videos. step_t_objects_identifier = [[] for _ in range(T)] step_t_frame_orig_size = [[] for _ in range(T)] step_t_masks = [[] for _ in range(T)] step_t_obj_to_frame_idx = [ [] for _ in range(T) ] # List to store frame indices for each time step for video_idx, video in enumerate(batch): orig_video_id = video.video_id orig_frame_size = video.size for t, frame in enumerate(video.frames): objects = frame.objects for obj in objects: orig_obj_id = obj.object_id orig_frame_idx = obj.frame_index step_t_obj_to_frame_idx[t].append( torch.tensor([t, video_idx], dtype=torch.int) ) step_t_masks[t].append(obj.segment.to(torch.bool)) step_t_objects_identifier[t].append( torch.tensor([orig_video_id, orig_obj_id, orig_frame_idx]) ) step_t_frame_orig_size[t].append(torch.tensor(orig_frame_size)) obj_to_frame_idx = torch.stack( [ torch.stack(obj_to_frame_idx, dim=0) for obj_to_frame_idx in step_t_obj_to_frame_idx ], dim=0, ) masks = torch.stack([torch.stack(masks, dim=0) for masks in step_t_masks], dim=0) objects_identifier = torch.stack( [torch.stack(id, dim=0) for id in step_t_objects_identifier], dim=0 ) frame_orig_size = torch.stack( [torch.stack(id, dim=0) for id in step_t_frame_orig_size], dim=0 ) return BatchedVideoDatapoint( img_batch=img_batch, obj_to_frame_idx=obj_to_frame_idx, masks=masks, metadata=BatchedVideoMetaData( unique_objects_identifier=objects_identifier, frame_orig_size=frame_orig_size, ), dict_key=dict_key, batch_size=[T], )