# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import random import re from datetime import timedelta from typing import Optional import hydra import numpy as np import omegaconf import torch import torch.distributed as dist from iopath.common.file_io import g_pathmgr from omegaconf import OmegaConf def multiply_all(*args): return np.prod(np.array(args)).item() def collect_dict_keys(config): """This function recursively iterates through a dataset configuration, and collect all the dict_key that are defined""" val_keys = [] # If the this config points to the collate function, then it has a key if "_target_" in config and re.match(r".*collate_fn.*", config["_target_"]): val_keys.append(config["dict_key"]) else: # Recursively proceed for v in config.values(): if isinstance(v, type(config)): val_keys.extend(collect_dict_keys(v)) elif isinstance(v, omegaconf.listconfig.ListConfig): for item in v: if isinstance(item, type(config)): val_keys.extend(collect_dict_keys(item)) return val_keys class Phase: TRAIN = "train" VAL = "val" def register_omegaconf_resolvers(): OmegaConf.register_new_resolver("get_method", hydra.utils.get_method) OmegaConf.register_new_resolver("get_class", hydra.utils.get_class) OmegaConf.register_new_resolver("add", lambda x, y: x + y) OmegaConf.register_new_resolver("times", multiply_all) OmegaConf.register_new_resolver("divide", lambda x, y: x / y) OmegaConf.register_new_resolver("pow", lambda x, y: x**y) OmegaConf.register_new_resolver("subtract", lambda x, y: x - y) OmegaConf.register_new_resolver("range", lambda x: list(range(x))) OmegaConf.register_new_resolver("int", lambda x: int(x)) OmegaConf.register_new_resolver("ceil_int", lambda x: int(math.ceil(x))) OmegaConf.register_new_resolver("merge", lambda *x: OmegaConf.merge(*x)) def setup_distributed_backend(backend, timeout_mins): """ Initialize torch.distributed and set the CUDA device. Expects environment variables to be set as per https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization along with the environ variable "LOCAL_RANK" which is used to set the CUDA device. """ # enable TORCH_NCCL_ASYNC_ERROR_HANDLING to ensure dist nccl ops time out after timeout_mins # of waiting os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1" logging.info(f"Setting up torch.distributed with a timeout of {timeout_mins} mins") dist.init_process_group(backend=backend, timeout=timedelta(minutes=timeout_mins)) return dist.get_rank() def get_machine_local_and_dist_rank(): """ Get the distributed and local rank of the current gpu. """ local_rank = int(os.environ.get("LOCAL_RANK", None)) distributed_rank = int(os.environ.get("RANK", None)) assert ( local_rank is not None and distributed_rank is not None ), "Please the set the RANK and LOCAL_RANK environment variables." return local_rank, distributed_rank def print_cfg(cfg): """ Supports printing both Hydra DictConfig and also the AttrDict config """ logging.info("Training with config:") logging.info(OmegaConf.to_yaml(cfg)) def set_seeds(seed_value, max_epochs, dist_rank): """ Set the python random, numpy and torch seed for each gpu. Also set the CUDA seeds if the CUDA is available. This ensures deterministic nature of the training. """ # Since in the pytorch sampler, we increment the seed by 1 for every epoch. seed_value = (seed_value + dist_rank) * max_epochs logging.info(f"MACHINE SEED: {seed_value}") random.seed(seed_value) np.random.seed(seed_value) torch.manual_seed(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed_value) def makedir(dir_path): """ Create the directory if it does not exist. """ is_success = False try: if not g_pathmgr.exists(dir_path): g_pathmgr.mkdirs(dir_path) is_success = True except BaseException: logging.info(f"Error creating directory: {dir_path}") return is_success def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_amp_type(amp_type: Optional[str] = None): if amp_type is None: return None assert amp_type in ["bfloat16", "float16"], "Invalid Amp type." if amp_type == "bfloat16": return torch.bfloat16 else: return torch.float16 def log_env_variables(): env_keys = sorted(list(os.environ.keys())) st = "" for k in env_keys: v = os.environ[k] st += f"{k}={v}\n" logging.info("Logging ENV_VARIABLES") logging.info(st) class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, device, fmt=":f"): self.name = name self.fmt = fmt self.device = device self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self._allow_updates = True def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name}: {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) class MemMeter: """Computes and stores the current, avg, and max of peak Mem usage per iteration""" def __init__(self, name, device, fmt=":f"): self.name = name self.fmt = fmt self.device = device self.reset() def reset(self): self.val = 0 # Per iteration max usage self.avg = 0 # Avg per iteration max usage self.peak = 0 # Peak usage for lifetime of program self.sum = 0 self.count = 0 self._allow_updates = True def update(self, n=1, reset_peak_usage=True): self.val = torch.cuda.max_memory_allocated() // 1e9 self.sum += self.val * n self.count += n self.avg = self.sum / self.count self.peak = max(self.peak, self.val) if reset_peak_usage: torch.cuda.reset_peak_memory_stats() def __str__(self): fmtstr = ( "{name}: {val" + self.fmt + "} ({avg" + self.fmt + "}/{peak" + self.fmt + "})" ) return fmtstr.format(**self.__dict__) def human_readable_time(time_seconds): time = int(time_seconds) minutes, seconds = divmod(time, 60) hours, minutes = divmod(minutes, 60) days, hours = divmod(hours, 24) return f"{days:02}d {hours:02}h {minutes:02}m" class DurationMeter: def __init__(self, name, device, fmt=":f"): self.name = name self.device = device self.fmt = fmt self.val = 0 def reset(self): self.val = 0 def update(self, val): self.val = val def add(self, val): self.val += val def __str__(self): return f"{self.name}: {human_readable_time(self.val)}" class ProgressMeter: def __init__(self, num_batches, meters, real_meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.real_meters = real_meters self.prefix = prefix def display(self, batch, enable_print=False): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] entries += [ " | ".join( [ f"{os.path.join(name, subname)}: {val:.4f}" for subname, val in meter.compute().items() ] ) for name, meter in self.real_meters.items() ] logging.info(" | ".join(entries)) if enable_print: print(" | ".join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = "{:" + str(num_digits) + "d}" return "[" + fmt + "/" + fmt.format(num_batches) + "]" def get_resume_checkpoint(checkpoint_save_dir): if not g_pathmgr.isdir(checkpoint_save_dir): return None ckpt_file = os.path.join(checkpoint_save_dir, "checkpoint.pt") if not g_pathmgr.isfile(ckpt_file): return None return ckpt_file