File size: 29,803 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import logging
import numpy as np
from collections import UserDict, defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Collection, Dict, Iterable, List, Optional, Sequence, Tuple
import torch
from torch.utils.data.dataset import Dataset
from detectron2.config import CfgNode
from detectron2.data.build import build_detection_test_loader as d2_build_detection_test_loader
from detectron2.data.build import build_detection_train_loader as d2_build_detection_train_loader
from detectron2.data.build import (
load_proposals_into_dataset,
print_instances_class_histogram,
trivial_batch_collator,
worker_init_reset_seed,
)
from detectron2.data.catalog import DatasetCatalog, Metadata, MetadataCatalog
from detectron2.data.samplers import TrainingSampler
from detectron2.utils.comm import get_world_size
from densepose.config import get_bootstrap_dataset_config
from densepose.modeling import build_densepose_embedder
from .combined_loader import CombinedDataLoader, Loader
from .dataset_mapper import DatasetMapper
from .datasets.coco import DENSEPOSE_CSE_KEYS_WITHOUT_MASK, DENSEPOSE_IUV_KEYS_WITHOUT_MASK
from .datasets.dataset_type import DatasetType
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter
from .samplers import (
DensePoseConfidenceBasedSampler,
DensePoseCSEConfidenceBasedSampler,
DensePoseCSEUniformSampler,
DensePoseUniformSampler,
MaskFromDensePoseSampler,
PredictionToGroundTruthSampler,
)
from .transform import ImageResizeTransform
from .utils import get_category_to_class_mapping, get_class_to_mesh_name_mapping
from .video import (
FirstKFramesSelector,
FrameSelectionStrategy,
LastKFramesSelector,
RandomKFramesSelector,
VideoKeyframeDataset,
video_list_from_file,
)
__all__ = ["build_detection_train_loader", "build_detection_test_loader"]
Instance = Dict[str, Any]
InstancePredicate = Callable[[Instance], bool]
def _compute_num_images_per_worker(cfg: CfgNode) -> int:
num_workers = get_world_size()
images_per_batch = cfg.SOLVER.IMS_PER_BATCH
assert (
images_per_batch % num_workers == 0
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
images_per_batch, num_workers
)
assert (
images_per_batch >= num_workers
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
images_per_batch, num_workers
)
images_per_worker = images_per_batch // num_workers
return images_per_worker
def _map_category_id_to_contiguous_id(dataset_name: str, dataset_dicts: Iterable[Instance]) -> None:
meta = MetadataCatalog.get(dataset_name)
for dataset_dict in dataset_dicts:
for ann in dataset_dict["annotations"]:
ann["category_id"] = meta.thing_dataset_id_to_contiguous_id[ann["category_id"]]
@dataclass
class _DatasetCategory:
"""
Class representing category data in a dataset:
- id: category ID, as specified in the dataset annotations file
- name: category name, as specified in the dataset annotations file
- mapped_id: category ID after applying category maps (DATASETS.CATEGORY_MAPS config option)
- mapped_name: category name after applying category maps
- dataset_name: dataset in which the category is defined
For example, when training models in a class-agnostic manner, one could take LVIS 1.0
dataset and map the animal categories to the same category as human data from COCO:
id = 225
name = "cat"
mapped_id = 1
mapped_name = "person"
dataset_name = "lvis_v1_animals_dp_train"
"""
id: int
name: str
mapped_id: int
mapped_name: str
dataset_name: str
_MergedCategoriesT = Dict[int, List[_DatasetCategory]]
def _add_category_id_to_contiguous_id_maps_to_metadata(
merged_categories: _MergedCategoriesT,
) -> None:
merged_categories_per_dataset = {}
for contiguous_cat_id, cat_id in enumerate(sorted(merged_categories.keys())):
for cat in merged_categories[cat_id]:
if cat.dataset_name not in merged_categories_per_dataset:
merged_categories_per_dataset[cat.dataset_name] = defaultdict(list)
merged_categories_per_dataset[cat.dataset_name][cat_id].append(
(
contiguous_cat_id,
cat,
)
)
logger = logging.getLogger(__name__)
for dataset_name, merged_categories in merged_categories_per_dataset.items():
meta = MetadataCatalog.get(dataset_name)
if not hasattr(meta, "thing_classes"):
meta.thing_classes = []
meta.thing_dataset_id_to_contiguous_id = {}
meta.thing_dataset_id_to_merged_id = {}
else:
meta.thing_classes.clear()
meta.thing_dataset_id_to_contiguous_id.clear()
meta.thing_dataset_id_to_merged_id.clear()
logger.info(f"Dataset {dataset_name}: category ID to contiguous ID mapping:")
for _cat_id, categories in sorted(merged_categories.items()):
added_to_thing_classes = False
for contiguous_cat_id, cat in categories:
if not added_to_thing_classes:
meta.thing_classes.append(cat.mapped_name)
added_to_thing_classes = True
meta.thing_dataset_id_to_contiguous_id[cat.id] = contiguous_cat_id
meta.thing_dataset_id_to_merged_id[cat.id] = cat.mapped_id
logger.info(f"{cat.id} ({cat.name}) -> {contiguous_cat_id}")
def _maybe_create_general_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
def has_annotations(instance: Instance) -> bool:
return "annotations" in instance
def has_only_crowd_anotations(instance: Instance) -> bool:
for ann in instance["annotations"]:
if ann.get("is_crowd", 0) == 0:
return False
return True
def general_keep_instance_predicate(instance: Instance) -> bool:
return has_annotations(instance) and not has_only_crowd_anotations(instance)
if not cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS:
return None
return general_keep_instance_predicate
def _maybe_create_keypoints_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
min_num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
def has_sufficient_num_keypoints(instance: Instance) -> bool:
num_kpts = sum(
(np.array(ann["keypoints"][2::3]) > 0).sum()
for ann in instance["annotations"]
if "keypoints" in ann
)
return num_kpts >= min_num_keypoints
if cfg.MODEL.KEYPOINT_ON and (min_num_keypoints > 0):
return has_sufficient_num_keypoints
return None
def _maybe_create_mask_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
if not cfg.MODEL.MASK_ON:
return None
def has_mask_annotations(instance: Instance) -> bool:
return any("segmentation" in ann for ann in instance["annotations"])
return has_mask_annotations
def _maybe_create_densepose_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
if not cfg.MODEL.DENSEPOSE_ON:
return None
use_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS
def has_densepose_annotations(instance: Instance) -> bool:
for ann in instance["annotations"]:
if all(key in ann for key in DENSEPOSE_IUV_KEYS_WITHOUT_MASK) or all(
key in ann for key in DENSEPOSE_CSE_KEYS_WITHOUT_MASK
):
return True
if use_masks and "segmentation" in ann:
return True
return False
return has_densepose_annotations
def _maybe_create_specific_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
specific_predicate_creators = [
_maybe_create_keypoints_keep_instance_predicate,
_maybe_create_mask_keep_instance_predicate,
_maybe_create_densepose_keep_instance_predicate,
]
predicates = [creator(cfg) for creator in specific_predicate_creators]
predicates = [p for p in predicates if p is not None]
if not predicates:
return None
def combined_predicate(instance: Instance) -> bool:
return any(p(instance) for p in predicates)
return combined_predicate
def _get_train_keep_instance_predicate(cfg: CfgNode):
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
combined_specific_keep_predicate = _maybe_create_specific_keep_instance_predicate(cfg)
def combined_general_specific_keep_predicate(instance: Instance) -> bool:
return general_keep_predicate(instance) and combined_specific_keep_predicate(instance)
if (general_keep_predicate is None) and (combined_specific_keep_predicate is None):
return None
if general_keep_predicate is None:
return combined_specific_keep_predicate
if combined_specific_keep_predicate is None:
return general_keep_predicate
return combined_general_specific_keep_predicate
def _get_test_keep_instance_predicate(cfg: CfgNode):
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
return general_keep_predicate
def _maybe_filter_and_map_categories(
dataset_name: str, dataset_dicts: List[Instance]
) -> List[Instance]:
meta = MetadataCatalog.get(dataset_name)
category_id_map = meta.thing_dataset_id_to_contiguous_id
filtered_dataset_dicts = []
for dataset_dict in dataset_dicts:
anns = []
for ann in dataset_dict["annotations"]:
cat_id = ann["category_id"]
if cat_id not in category_id_map:
continue
ann["category_id"] = category_id_map[cat_id]
anns.append(ann)
dataset_dict["annotations"] = anns
filtered_dataset_dicts.append(dataset_dict)
return filtered_dataset_dicts
def _add_category_whitelists_to_metadata(cfg: CfgNode) -> None:
for dataset_name, whitelisted_cat_ids in cfg.DATASETS.WHITELISTED_CATEGORIES.items():
meta = MetadataCatalog.get(dataset_name)
meta.whitelisted_categories = whitelisted_cat_ids
logger = logging.getLogger(__name__)
logger.info(
"Whitelisted categories for dataset {}: {}".format(
dataset_name, meta.whitelisted_categories
)
)
def _add_category_maps_to_metadata(cfg: CfgNode) -> None:
for dataset_name, category_map in cfg.DATASETS.CATEGORY_MAPS.items():
category_map = {
int(cat_id_src): int(cat_id_dst) for cat_id_src, cat_id_dst in category_map.items()
}
meta = MetadataCatalog.get(dataset_name)
meta.category_map = category_map
logger = logging.getLogger(__name__)
logger.info("Category maps for dataset {}: {}".format(dataset_name, meta.category_map))
def _add_category_info_to_bootstrapping_metadata(dataset_name: str, dataset_cfg: CfgNode) -> None:
meta = MetadataCatalog.get(dataset_name)
meta.category_to_class_mapping = get_category_to_class_mapping(dataset_cfg)
meta.categories = dataset_cfg.CATEGORIES
meta.max_count_per_category = dataset_cfg.MAX_COUNT_PER_CATEGORY
logger = logging.getLogger(__name__)
logger.info(
"Category to class mapping for dataset {}: {}".format(
dataset_name, meta.category_to_class_mapping
)
)
def _maybe_add_class_to_mesh_name_map_to_metadata(dataset_names: List[str], cfg: CfgNode) -> None:
for dataset_name in dataset_names:
meta = MetadataCatalog.get(dataset_name)
if not hasattr(meta, "class_to_mesh_name"):
meta.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg)
def _merge_categories(dataset_names: Collection[str]) -> _MergedCategoriesT:
merged_categories = defaultdict(list)
category_names = {}
for dataset_name in dataset_names:
meta = MetadataCatalog.get(dataset_name)
whitelisted_categories = meta.get("whitelisted_categories")
category_map = meta.get("category_map", {})
cat_ids = (
whitelisted_categories if whitelisted_categories is not None else meta.categories.keys()
)
for cat_id in cat_ids:
cat_name = meta.categories[cat_id]
cat_id_mapped = category_map.get(cat_id, cat_id)
if cat_id_mapped == cat_id or cat_id_mapped in cat_ids:
category_names[cat_id] = cat_name
else:
category_names[cat_id] = str(cat_id_mapped)
# assign temporary mapped category name, this name can be changed
# during the second pass, since mapped ID can correspond to a category
# from a different dataset
cat_name_mapped = meta.categories[cat_id_mapped]
merged_categories[cat_id_mapped].append(
_DatasetCategory(
id=cat_id,
name=cat_name,
mapped_id=cat_id_mapped,
mapped_name=cat_name_mapped,
dataset_name=dataset_name,
)
)
# second pass to assign proper mapped category names
for cat_id, categories in merged_categories.items():
for cat in categories:
if cat_id in category_names and cat.mapped_name != category_names[cat_id]:
cat.mapped_name = category_names[cat_id]
return merged_categories
def _warn_if_merged_different_categories(merged_categories: _MergedCategoriesT) -> None:
logger = logging.getLogger(__name__)
for cat_id in merged_categories:
merged_categories_i = merged_categories[cat_id]
first_cat_name = merged_categories_i[0].name
if len(merged_categories_i) > 1 and not all(
cat.name == first_cat_name for cat in merged_categories_i[1:]
):
cat_summary_str = ", ".join(
[f"{cat.id} ({cat.name}) from {cat.dataset_name}" for cat in merged_categories_i]
)
logger.warning(
f"Merged category {cat_id} corresponds to the following categories: "
f"{cat_summary_str}"
)
def combine_detection_dataset_dicts(
dataset_names: Collection[str],
keep_instance_predicate: Optional[InstancePredicate] = None,
proposal_files: Optional[Collection[str]] = None,
) -> List[Instance]:
"""
Load and prepare dataset dicts for training / testing
Args:
dataset_names (Collection[str]): a list of dataset names
keep_instance_predicate (Callable: Dict[str, Any] -> bool): predicate
applied to instance dicts which defines whether to keep the instance
proposal_files (Collection[str]): if given, a list of object proposal files
that match each dataset in `dataset_names`.
"""
assert len(dataset_names)
if proposal_files is None:
proposal_files = [None] * len(dataset_names)
assert len(dataset_names) == len(proposal_files)
# load datasets and metadata
dataset_name_to_dicts = {}
for dataset_name in dataset_names:
dataset_name_to_dicts[dataset_name] = DatasetCatalog.get(dataset_name)
assert len(dataset_name_to_dicts), f"Dataset '{dataset_name}' is empty!"
# merge categories, requires category metadata to be loaded
# cat_id -> [(orig_cat_id, cat_name, dataset_name)]
merged_categories = _merge_categories(dataset_names)
_warn_if_merged_different_categories(merged_categories)
merged_category_names = [
merged_categories[cat_id][0].mapped_name for cat_id in sorted(merged_categories)
]
# map to contiguous category IDs
_add_category_id_to_contiguous_id_maps_to_metadata(merged_categories)
# load annotations and dataset metadata
for dataset_name, proposal_file in zip(dataset_names, proposal_files):
dataset_dicts = dataset_name_to_dicts[dataset_name]
assert len(dataset_dicts), f"Dataset '{dataset_name}' is empty!"
if proposal_file is not None:
dataset_dicts = load_proposals_into_dataset(dataset_dicts, proposal_file)
dataset_dicts = _maybe_filter_and_map_categories(dataset_name, dataset_dicts)
print_instances_class_histogram(dataset_dicts, merged_category_names)
dataset_name_to_dicts[dataset_name] = dataset_dicts
if keep_instance_predicate is not None:
all_datasets_dicts_plain = [
d
for d in itertools.chain.from_iterable(dataset_name_to_dicts.values())
if keep_instance_predicate(d)
]
else:
all_datasets_dicts_plain = list(
itertools.chain.from_iterable(dataset_name_to_dicts.values())
)
return all_datasets_dicts_plain
def build_detection_train_loader(cfg: CfgNode, mapper=None):
"""
A data loader is created in a way similar to that of Detectron2.
The main differences are:
- it allows to combine datasets with different but compatible object category sets
The data loader is created by the following steps:
1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
2. Start workers to work on the dicts. Each worker will:
* Map each metadata dict into another format to be consumed by the model.
* Batch them by simply putting dicts into a list.
The batched ``list[mapped_dict]`` is what this dataloader will return.
Args:
cfg (CfgNode): the config
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
By default it will be `DatasetMapper(cfg, True)`.
Returns:
an infinite iterator of training data
"""
_add_category_whitelists_to_metadata(cfg)
_add_category_maps_to_metadata(cfg)
_maybe_add_class_to_mesh_name_map_to_metadata(cfg.DATASETS.TRAIN, cfg)
dataset_dicts = combine_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
keep_instance_predicate=_get_train_keep_instance_predicate(cfg),
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
return d2_build_detection_train_loader(cfg, dataset=dataset_dicts, mapper=mapper)
def build_detection_test_loader(cfg, dataset_name, mapper=None):
"""
Similar to `build_detection_train_loader`.
But this function uses the given `dataset_name` argument (instead of the names in cfg),
and uses batch size 1.
Args:
cfg: a detectron2 CfgNode
dataset_name (str): a name of the dataset that's available in the DatasetCatalog
mapper (callable): a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
By default it will be `DatasetMapper(cfg, False)`.
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
"""
_add_category_whitelists_to_metadata(cfg)
_add_category_maps_to_metadata(cfg)
_maybe_add_class_to_mesh_name_map_to_metadata([dataset_name], cfg)
dataset_dicts = combine_detection_dataset_dicts(
[dataset_name],
keep_instance_predicate=_get_test_keep_instance_predicate(cfg),
proposal_files=[
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
]
if cfg.MODEL.LOAD_PROPOSALS
else None,
)
sampler = None
if not cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE:
sampler = torch.utils.data.SequentialSampler(dataset_dicts)
if mapper is None:
mapper = DatasetMapper(cfg, False)
return d2_build_detection_test_loader(
dataset_dicts, mapper=mapper, num_workers=cfg.DATALOADER.NUM_WORKERS, sampler=sampler
)
def build_frame_selector(cfg: CfgNode):
strategy = FrameSelectionStrategy(cfg.STRATEGY)
if strategy == FrameSelectionStrategy.RANDOM_K:
frame_selector = RandomKFramesSelector(cfg.NUM_IMAGES)
elif strategy == FrameSelectionStrategy.FIRST_K:
frame_selector = FirstKFramesSelector(cfg.NUM_IMAGES)
elif strategy == FrameSelectionStrategy.LAST_K:
frame_selector = LastKFramesSelector(cfg.NUM_IMAGES)
elif strategy == FrameSelectionStrategy.ALL:
frame_selector = None
# pyre-fixme[61]: `frame_selector` may not be initialized here.
return frame_selector
def build_transform(cfg: CfgNode, data_type: str):
if cfg.TYPE == "resize":
if data_type == "image":
return ImageResizeTransform(cfg.MIN_SIZE, cfg.MAX_SIZE)
raise ValueError(f"Unknown transform {cfg.TYPE} for data type {data_type}")
def build_combined_loader(cfg: CfgNode, loaders: Collection[Loader], ratios: Sequence[float]):
images_per_worker = _compute_num_images_per_worker(cfg)
return CombinedDataLoader(loaders, images_per_worker, ratios)
def build_bootstrap_dataset(dataset_name: str, cfg: CfgNode) -> Sequence[torch.Tensor]:
"""
Build dataset that provides data to bootstrap on
Args:
dataset_name (str): Name of the dataset, needs to have associated metadata
to load the data
cfg (CfgNode): bootstrapping config
Returns:
Sequence[Tensor] - dataset that provides image batches, Tensors of size
[N, C, H, W] of type float32
"""
logger = logging.getLogger(__name__)
_add_category_info_to_bootstrapping_metadata(dataset_name, cfg)
meta = MetadataCatalog.get(dataset_name)
factory = BootstrapDatasetFactoryCatalog.get(meta.dataset_type)
dataset = None
if factory is not None:
dataset = factory(meta, cfg)
if dataset is None:
logger.warning(f"Failed to create dataset {dataset_name} of type {meta.dataset_type}")
return dataset
def build_data_sampler(cfg: CfgNode, sampler_cfg: CfgNode, embedder: Optional[torch.nn.Module]):
if sampler_cfg.TYPE == "densepose_uniform":
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseUniformSampler(count_per_class=sampler_cfg.COUNT_PER_CLASS),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
elif sampler_cfg.TYPE == "densepose_UV_confidence":
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseConfidenceBasedSampler(
confidence_channel="sigma_2",
count_per_class=sampler_cfg.COUNT_PER_CLASS,
search_proportion=0.5,
),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
elif sampler_cfg.TYPE == "densepose_fine_segm_confidence":
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseConfidenceBasedSampler(
confidence_channel="fine_segm_confidence",
count_per_class=sampler_cfg.COUNT_PER_CLASS,
search_proportion=0.5,
),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
elif sampler_cfg.TYPE == "densepose_coarse_segm_confidence":
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseConfidenceBasedSampler(
confidence_channel="coarse_segm_confidence",
count_per_class=sampler_cfg.COUNT_PER_CLASS,
search_proportion=0.5,
),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
elif sampler_cfg.TYPE == "densepose_cse_uniform":
assert embedder is not None
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseCSEUniformSampler(
cfg=cfg,
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
embedder=embedder,
count_per_class=sampler_cfg.COUNT_PER_CLASS,
),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
elif sampler_cfg.TYPE == "densepose_cse_coarse_segm_confidence":
assert embedder is not None
data_sampler = PredictionToGroundTruthSampler()
# transform densepose pred -> gt
data_sampler.register_sampler(
"pred_densepose",
"gt_densepose",
DensePoseCSEConfidenceBasedSampler(
cfg=cfg,
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
embedder=embedder,
confidence_channel="coarse_segm_confidence",
count_per_class=sampler_cfg.COUNT_PER_CLASS,
search_proportion=0.5,
),
)
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
return data_sampler
raise ValueError(f"Unknown data sampler type {sampler_cfg.TYPE}")
def build_data_filter(cfg: CfgNode):
if cfg.TYPE == "detection_score":
min_score = cfg.MIN_VALUE
return ScoreBasedFilter(min_score=min_score)
raise ValueError(f"Unknown data filter type {cfg.TYPE}")
def build_inference_based_loader(
cfg: CfgNode,
dataset_cfg: CfgNode,
model: torch.nn.Module,
embedder: Optional[torch.nn.Module] = None,
) -> InferenceBasedLoader:
"""
Constructs data loader based on inference results of a model.
"""
dataset = build_bootstrap_dataset(dataset_cfg.DATASET, dataset_cfg.IMAGE_LOADER)
meta = MetadataCatalog.get(dataset_cfg.DATASET)
training_sampler = TrainingSampler(len(dataset))
data_loader = torch.utils.data.DataLoader(
dataset, # pyre-ignore[6]
batch_size=dataset_cfg.IMAGE_LOADER.BATCH_SIZE,
sampler=training_sampler,
num_workers=dataset_cfg.IMAGE_LOADER.NUM_WORKERS,
collate_fn=trivial_batch_collator,
worker_init_fn=worker_init_reset_seed,
)
return InferenceBasedLoader(
model,
data_loader=data_loader,
data_sampler=build_data_sampler(cfg, dataset_cfg.DATA_SAMPLER, embedder),
data_filter=build_data_filter(dataset_cfg.FILTER),
shuffle=True,
batch_size=dataset_cfg.INFERENCE.OUTPUT_BATCH_SIZE,
inference_batch_size=dataset_cfg.INFERENCE.INPUT_BATCH_SIZE,
category_to_class_mapping=meta.category_to_class_mapping,
)
def has_inference_based_loaders(cfg: CfgNode) -> bool:
"""
Returns True, if at least one inferense-based loader must
be instantiated for training
"""
return len(cfg.BOOTSTRAP_DATASETS) > 0
def build_inference_based_loaders(
cfg: CfgNode, model: torch.nn.Module
) -> Tuple[List[InferenceBasedLoader], List[float]]:
loaders = []
ratios = []
embedder = build_densepose_embedder(cfg).to(device=model.device) # pyre-ignore[16]
for dataset_spec in cfg.BOOTSTRAP_DATASETS:
dataset_cfg = get_bootstrap_dataset_config().clone()
dataset_cfg.merge_from_other_cfg(CfgNode(dataset_spec))
loader = build_inference_based_loader(cfg, dataset_cfg, model, embedder)
loaders.append(loader)
ratios.append(dataset_cfg.RATIO)
return loaders, ratios
def build_video_list_dataset(meta: Metadata, cfg: CfgNode):
video_list_fpath = meta.video_list_fpath
video_base_path = meta.video_base_path
category = meta.category
if cfg.TYPE == "video_keyframe":
frame_selector = build_frame_selector(cfg.SELECT)
transform = build_transform(cfg.TRANSFORM, data_type="image")
video_list = video_list_from_file(video_list_fpath, video_base_path)
keyframe_helper_fpath = getattr(cfg, "KEYFRAME_HELPER", None)
return VideoKeyframeDataset(
video_list, category, frame_selector, transform, keyframe_helper_fpath
)
class _BootstrapDatasetFactoryCatalog(UserDict):
"""
A global dictionary that stores information about bootstrapped datasets creation functions
from metadata and config, for diverse DatasetType
"""
def register(self, dataset_type: DatasetType, factory: Callable[[Metadata, CfgNode], Dataset]):
"""
Args:
dataset_type (DatasetType): a DatasetType e.g. DatasetType.VIDEO_LIST
factory (Callable[Metadata, CfgNode]): a callable which takes Metadata and cfg
arguments and returns a dataset object.
"""
assert dataset_type not in self, "Dataset '{}' is already registered!".format(dataset_type)
self[dataset_type] = factory
BootstrapDatasetFactoryCatalog = _BootstrapDatasetFactoryCatalog()
BootstrapDatasetFactoryCatalog.register(DatasetType.VIDEO_LIST, build_video_list_dataset)
|