File size: 27,325 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Implement many useful :class:`Augmentation`.
"""
import numpy as np
import sys
from numpy import random
from typing import Tuple
import torch
from fvcore.transforms.transform import (
BlendTransform,
CropTransform,
HFlipTransform,
NoOpTransform,
PadTransform,
Transform,
TransformList,
VFlipTransform,
)
from PIL import Image
from detectron2.structures import Boxes, pairwise_iou
from .augmentation import Augmentation, _transform_to_aug
from .transform import ExtentTransform, ResizeTransform, RotationTransform
__all__ = [
"FixedSizeCrop",
"RandomApply",
"RandomBrightness",
"RandomContrast",
"RandomCrop",
"RandomExtent",
"RandomFlip",
"RandomSaturation",
"RandomLighting",
"RandomRotation",
"Resize",
"ResizeScale",
"ResizeShortestEdge",
"RandomCrop_CategoryAreaConstraint",
"RandomResize",
"MinIoURandomCrop",
]
class RandomApply(Augmentation):
"""
Randomly apply an augmentation with a given probability.
"""
def __init__(self, tfm_or_aug, prob=0.5):
"""
Args:
tfm_or_aug (Transform, Augmentation): the transform or augmentation
to be applied. It can either be a `Transform` or `Augmentation`
instance.
prob (float): probability between 0.0 and 1.0 that
the wrapper transformation is applied
"""
super().__init__()
self.aug = _transform_to_aug(tfm_or_aug)
assert 0.0 <= prob <= 1.0, f"Probablity must be between 0.0 and 1.0 (given: {prob})"
self.prob = prob
def get_transform(self, *args):
do = self._rand_range() < self.prob
if do:
return self.aug.get_transform(*args)
else:
return NoOpTransform()
def __call__(self, aug_input):
do = self._rand_range() < self.prob
if do:
return self.aug(aug_input)
else:
return NoOpTransform()
class RandomFlip(Augmentation):
"""
Flip the image horizontally or vertically with the given probability.
"""
def __init__(self, prob=0.5, *, horizontal=True, vertical=False):
"""
Args:
prob (float): probability of flip.
horizontal (boolean): whether to apply horizontal flipping
vertical (boolean): whether to apply vertical flipping
"""
super().__init__()
if horizontal and vertical:
raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.")
if not horizontal and not vertical:
raise ValueError("At least one of horiz or vert has to be True!")
self._init(locals())
def get_transform(self, image):
h, w = image.shape[:2]
do = self._rand_range() < self.prob
if do:
if self.horizontal:
return HFlipTransform(w)
elif self.vertical:
return VFlipTransform(h)
else:
return NoOpTransform()
class Resize(Augmentation):
"""Resize image to a fixed target size"""
def __init__(self, shape, interp=Image.BILINEAR):
"""
Args:
shape: (h, w) tuple or a int
interp: PIL interpolation method
"""
if isinstance(shape, int):
shape = (shape, shape)
shape = tuple(shape)
self._init(locals())
def get_transform(self, image):
return ResizeTransform(
image.shape[0], image.shape[1], self.shape[0], self.shape[1], self.interp
)
class ResizeShortestEdge(Augmentation):
"""
Resize the image while keeping the aspect ratio unchanged.
It attempts to scale the shorter edge to the given `short_edge_length`,
as long as the longer edge does not exceed `max_size`.
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
"""
@torch.jit.unused
def __init__(
self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR
):
"""
Args:
short_edge_length (list[int]): If ``sample_style=="range"``,
a [min, max] interval from which to sample the shortest edge length.
If ``sample_style=="choice"``, a list of shortest edge lengths to sample from.
max_size (int): maximum allowed longest edge length.
sample_style (str): either "range" or "choice".
"""
super().__init__()
assert sample_style in ["range", "choice"], sample_style
self.is_range = sample_style == "range"
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
if self.is_range:
assert len(short_edge_length) == 2, (
"short_edge_length must be two values using 'range' sample style."
f" Got {short_edge_length}!"
)
self._init(locals())
@torch.jit.unused
def get_transform(self, image):
h, w = image.shape[:2]
if self.is_range:
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
else:
size = np.random.choice(self.short_edge_length)
if size == 0:
return NoOpTransform()
newh, neww = ResizeShortestEdge.get_output_shape(h, w, size, self.max_size)
return ResizeTransform(h, w, newh, neww, self.interp)
@staticmethod
def get_output_shape(
oldh: int, oldw: int, short_edge_length: int, max_size: int
) -> Tuple[int, int]:
"""
Compute the output size given input size and target short edge length.
"""
h, w = oldh, oldw
size = short_edge_length * 1.0
scale = size / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > max_size:
scale = max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)
class ResizeScale(Augmentation):
"""
Takes target size as input and randomly scales the given target size between `min_scale`
and `max_scale`. It then scales the input image such that it fits inside the scaled target
box, keeping the aspect ratio constant.
This implements the resize part of the Google's 'resize_and_crop' data augmentation:
https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/input_utils.py#L127
"""
def __init__(
self,
min_scale: float,
max_scale: float,
target_height: int,
target_width: int,
interp: int = Image.BILINEAR,
):
"""
Args:
min_scale: minimum image scale range.
max_scale: maximum image scale range.
target_height: target image height.
target_width: target image width.
interp: image interpolation method.
"""
super().__init__()
self._init(locals())
def _get_resize(self, image: np.ndarray, scale: float) -> Transform:
input_size = image.shape[:2]
# Compute new target size given a scale.
target_size = (self.target_height, self.target_width)
target_scale_size = np.multiply(target_size, scale)
# Compute actual rescaling applied to input image and output size.
output_scale = np.minimum(
target_scale_size[0] / input_size[0], target_scale_size[1] / input_size[1]
)
output_size = np.round(np.multiply(input_size, output_scale)).astype(int)
return ResizeTransform(
input_size[0], input_size[1], int(output_size[0]), int(output_size[1]), self.interp
)
def get_transform(self, image: np.ndarray) -> Transform:
random_scale = np.random.uniform(self.min_scale, self.max_scale)
return self._get_resize(image, random_scale)
class RandomRotation(Augmentation):
"""
This method returns a copy of this image, rotated the given
number of degrees counter clockwise around the given center.
"""
def __init__(self, angle, expand=True, center=None, sample_style="range", interp=None):
"""
Args:
angle (list[float]): If ``sample_style=="range"``,
a [min, max] interval from which to sample the angle (in degrees).
If ``sample_style=="choice"``, a list of angles to sample from
expand (bool): choose if the image should be resized to fit the whole
rotated image (default), or simply cropped
center (list[[float, float]]): If ``sample_style=="range"``,
a [[minx, miny], [maxx, maxy]] relative interval from which to sample the center,
[0, 0] being the top left of the image and [1, 1] the bottom right.
If ``sample_style=="choice"``, a list of centers to sample from
Default: None, which means that the center of rotation is the center of the image
center has no effect if expand=True because it only affects shifting
"""
super().__init__()
assert sample_style in ["range", "choice"], sample_style
self.is_range = sample_style == "range"
if isinstance(angle, (float, int)):
angle = (angle, angle)
if center is not None and isinstance(center[0], (float, int)):
center = (center, center)
self._init(locals())
def get_transform(self, image):
h, w = image.shape[:2]
center = None
if self.is_range:
angle = np.random.uniform(self.angle[0], self.angle[1])
if self.center is not None:
center = (
np.random.uniform(self.center[0][0], self.center[1][0]),
np.random.uniform(self.center[0][1], self.center[1][1]),
)
else:
angle = np.random.choice(self.angle)
if self.center is not None:
center = np.random.choice(self.center)
if center is not None:
center = (w * center[0], h * center[1]) # Convert to absolute coordinates
if angle % 360 == 0:
return NoOpTransform()
return RotationTransform(h, w, angle, expand=self.expand, center=center, interp=self.interp)
class FixedSizeCrop(Augmentation):
"""
If `crop_size` is smaller than the input image size, then it uses a random crop of
the crop size. If `crop_size` is larger than the input image size, then it pads
the right and the bottom of the image to the crop size if `pad` is True, otherwise
it returns the smaller image.
"""
def __init__(
self,
crop_size: Tuple[int],
pad: bool = True,
pad_value: float = 128.0,
seg_pad_value: int = 255,
):
"""
Args:
crop_size: target image (height, width).
pad: if True, will pad images smaller than `crop_size` up to `crop_size`
pad_value: the padding value to the image.
seg_pad_value: the padding value to the segmentation mask.
"""
super().__init__()
self._init(locals())
def _get_crop(self, image: np.ndarray) -> Transform:
# Compute the image scale and scaled size.
input_size = image.shape[:2]
output_size = self.crop_size
# Add random crop if the image is scaled up.
max_offset = np.subtract(input_size, output_size)
max_offset = np.maximum(max_offset, 0)
offset = np.multiply(max_offset, np.random.uniform(0.0, 1.0))
offset = np.round(offset).astype(int)
return CropTransform(
offset[1], offset[0], output_size[1], output_size[0], input_size[1], input_size[0]
)
def _get_pad(self, image: np.ndarray) -> Transform:
# Compute the image scale and scaled size.
input_size = image.shape[:2]
output_size = self.crop_size
# Add padding if the image is scaled down.
pad_size = np.subtract(output_size, input_size)
pad_size = np.maximum(pad_size, 0)
original_size = np.minimum(input_size, output_size)
return PadTransform(
0,
0,
pad_size[1],
pad_size[0],
original_size[1],
original_size[0],
self.pad_value,
self.seg_pad_value,
)
def get_transform(self, image: np.ndarray) -> TransformList:
transforms = [self._get_crop(image)]
if self.pad:
transforms.append(self._get_pad(image))
return TransformList(transforms)
class RandomCrop(Augmentation):
"""
Randomly crop a rectangle region out of an image.
"""
def __init__(self, crop_type: str, crop_size):
"""
Args:
crop_type (str): one of "relative_range", "relative", "absolute", "absolute_range".
crop_size (tuple[float, float]): two floats, explained below.
- "relative": crop a (H * crop_size[0], W * crop_size[1]) region from an input image of
size (H, W). crop size should be in (0, 1]
- "relative_range": uniformly sample two values from [crop_size[0], 1]
and [crop_size[1]], 1], and use them as in "relative" crop type.
- "absolute" crop a (crop_size[0], crop_size[1]) region from input image.
crop_size must be smaller than the input image size.
- "absolute_range", for an input of size (H, W), uniformly sample H_crop in
[crop_size[0], min(H, crop_size[1])] and W_crop in [crop_size[0], min(W, crop_size[1])].
Then crop a region (H_crop, W_crop).
"""
# TODO style of relative_range and absolute_range are not consistent:
# one takes (h, w) but another takes (min, max)
super().__init__()
assert crop_type in ["relative_range", "relative", "absolute", "absolute_range"]
self._init(locals())
def get_transform(self, image):
h, w = image.shape[:2]
croph, cropw = self.get_crop_size((h, w))
assert h >= croph and w >= cropw, "Shape computation in {} has bugs.".format(self)
h0 = np.random.randint(h - croph + 1)
w0 = np.random.randint(w - cropw + 1)
return CropTransform(w0, h0, cropw, croph)
def get_crop_size(self, image_size):
"""
Args:
image_size (tuple): height, width
Returns:
crop_size (tuple): height, width in absolute pixels
"""
h, w = image_size
if self.crop_type == "relative":
ch, cw = self.crop_size
return int(h * ch + 0.5), int(w * cw + 0.5)
elif self.crop_type == "relative_range":
crop_size = np.asarray(self.crop_size, dtype=np.float32)
ch, cw = crop_size + np.random.rand(2) * (1 - crop_size)
return int(h * ch + 0.5), int(w * cw + 0.5)
elif self.crop_type == "absolute":
return (min(self.crop_size[0], h), min(self.crop_size[1], w))
elif self.crop_type == "absolute_range":
assert self.crop_size[0] <= self.crop_size[1]
ch = np.random.randint(min(h, self.crop_size[0]), min(h, self.crop_size[1]) + 1)
cw = np.random.randint(min(w, self.crop_size[0]), min(w, self.crop_size[1]) + 1)
return ch, cw
else:
raise NotImplementedError("Unknown crop type {}".format(self.crop_type))
class RandomCrop_CategoryAreaConstraint(Augmentation):
"""
Similar to :class:`RandomCrop`, but find a cropping window such that no single category
occupies a ratio of more than `single_category_max_area` in semantic segmentation ground
truth, which can cause unstability in training. The function attempts to find such a valid
cropping window for at most 10 times.
"""
def __init__(
self,
crop_type: str,
crop_size,
single_category_max_area: float = 1.0,
ignored_category: int = None,
):
"""
Args:
crop_type, crop_size: same as in :class:`RandomCrop`
single_category_max_area: the maximum allowed area ratio of a
category. Set to 1.0 to disable
ignored_category: allow this category in the semantic segmentation
ground truth to exceed the area ratio. Usually set to the category
that's ignored in training.
"""
self.crop_aug = RandomCrop(crop_type, crop_size)
self._init(locals())
def get_transform(self, image, sem_seg):
if self.single_category_max_area >= 1.0:
return self.crop_aug.get_transform(image)
else:
h, w = sem_seg.shape
for _ in range(10):
crop_size = self.crop_aug.get_crop_size((h, w))
y0 = np.random.randint(h - crop_size[0] + 1)
x0 = np.random.randint(w - crop_size[1] + 1)
sem_seg_temp = sem_seg[y0 : y0 + crop_size[0], x0 : x0 + crop_size[1]]
labels, cnt = np.unique(sem_seg_temp, return_counts=True)
if self.ignored_category is not None:
cnt = cnt[labels != self.ignored_category]
if len(cnt) > 1 and np.max(cnt) < np.sum(cnt) * self.single_category_max_area:
break
crop_tfm = CropTransform(x0, y0, crop_size[1], crop_size[0])
return crop_tfm
class RandomExtent(Augmentation):
"""
Outputs an image by cropping a random "subrect" of the source image.
The subrect can be parameterized to include pixels outside the source image,
in which case they will be set to zeros (i.e. black). The size of the output
image will vary with the size of the random subrect.
"""
def __init__(self, scale_range, shift_range):
"""
Args:
output_size (h, w): Dimensions of output image
scale_range (l, h): Range of input-to-output size scaling factor
shift_range (x, y): Range of shifts of the cropped subrect. The rect
is shifted by [w / 2 * Uniform(-x, x), h / 2 * Uniform(-y, y)],
where (w, h) is the (width, height) of the input image. Set each
component to zero to crop at the image's center.
"""
super().__init__()
self._init(locals())
def get_transform(self, image):
img_h, img_w = image.shape[:2]
# Initialize src_rect to fit the input image.
src_rect = np.array([-0.5 * img_w, -0.5 * img_h, 0.5 * img_w, 0.5 * img_h])
# Apply a random scaling to the src_rect.
src_rect *= np.random.uniform(self.scale_range[0], self.scale_range[1])
# Apply a random shift to the coordinates origin.
src_rect[0::2] += self.shift_range[0] * img_w * (np.random.rand() - 0.5)
src_rect[1::2] += self.shift_range[1] * img_h * (np.random.rand() - 0.5)
# Map src_rect coordinates into image coordinates (center at corner).
src_rect[0::2] += 0.5 * img_w
src_rect[1::2] += 0.5 * img_h
return ExtentTransform(
src_rect=(src_rect[0], src_rect[1], src_rect[2], src_rect[3]),
output_size=(int(src_rect[3] - src_rect[1]), int(src_rect[2] - src_rect[0])),
)
class RandomContrast(Augmentation):
"""
Randomly transforms image contrast.
Contrast intensity is uniformly sampled in (intensity_min, intensity_max).
- intensity < 1 will reduce contrast
- intensity = 1 will preserve the input image
- intensity > 1 will increase contrast
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
"""
def __init__(self, intensity_min, intensity_max):
"""
Args:
intensity_min (float): Minimum augmentation
intensity_max (float): Maximum augmentation
"""
super().__init__()
self._init(locals())
def get_transform(self, image):
w = np.random.uniform(self.intensity_min, self.intensity_max)
return BlendTransform(src_image=image.mean(), src_weight=1 - w, dst_weight=w)
class RandomBrightness(Augmentation):
"""
Randomly transforms image brightness.
Brightness intensity is uniformly sampled in (intensity_min, intensity_max).
- intensity < 1 will reduce brightness
- intensity = 1 will preserve the input image
- intensity > 1 will increase brightness
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
"""
def __init__(self, intensity_min, intensity_max):
"""
Args:
intensity_min (float): Minimum augmentation
intensity_max (float): Maximum augmentation
"""
super().__init__()
self._init(locals())
def get_transform(self, image):
w = np.random.uniform(self.intensity_min, self.intensity_max)
return BlendTransform(src_image=0, src_weight=1 - w, dst_weight=w)
class RandomSaturation(Augmentation):
"""
Randomly transforms saturation of an RGB image.
Input images are assumed to have 'RGB' channel order.
Saturation intensity is uniformly sampled in (intensity_min, intensity_max).
- intensity < 1 will reduce saturation (make the image more grayscale)
- intensity = 1 will preserve the input image
- intensity > 1 will increase saturation
See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
"""
def __init__(self, intensity_min, intensity_max):
"""
Args:
intensity_min (float): Minimum augmentation (1 preserves input).
intensity_max (float): Maximum augmentation (1 preserves input).
"""
super().__init__()
self._init(locals())
def get_transform(self, image):
assert image.shape[-1] == 3, "RandomSaturation only works on RGB images"
w = np.random.uniform(self.intensity_min, self.intensity_max)
grayscale = image.dot([0.299, 0.587, 0.114])[:, :, np.newaxis]
return BlendTransform(src_image=grayscale, src_weight=1 - w, dst_weight=w)
class RandomLighting(Augmentation):
"""
The "lighting" augmentation described in AlexNet, using fixed PCA over ImageNet.
Input images are assumed to have 'RGB' channel order.
The degree of color jittering is randomly sampled via a normal distribution,
with standard deviation given by the scale parameter.
"""
def __init__(self, scale):
"""
Args:
scale (float): Standard deviation of principal component weighting.
"""
super().__init__()
self._init(locals())
self.eigen_vecs = np.array(
[[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]
)
self.eigen_vals = np.array([0.2175, 0.0188, 0.0045])
def get_transform(self, image):
assert image.shape[-1] == 3, "RandomLighting only works on RGB images"
weights = np.random.normal(scale=self.scale, size=3)
return BlendTransform(
src_image=self.eigen_vecs.dot(weights * self.eigen_vals), src_weight=1.0, dst_weight=1.0
)
class RandomResize(Augmentation):
"""Randomly resize image to a target size in shape_list"""
def __init__(self, shape_list, interp=Image.BILINEAR):
"""
Args:
shape_list: a list of shapes in (h, w)
interp: PIL interpolation method
"""
self.shape_list = shape_list
self._init(locals())
def get_transform(self, image):
shape_idx = np.random.randint(low=0, high=len(self.shape_list))
h, w = self.shape_list[shape_idx]
return ResizeTransform(image.shape[0], image.shape[1], h, w, self.interp)
class MinIoURandomCrop(Augmentation):
"""Random crop the image & bboxes, the cropped patches have minimum IoU
requirement with original image & bboxes, the IoU threshold is randomly
selected from min_ious.
Args:
min_ious (tuple): minimum IoU threshold for all intersections with
bounding boxes
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w,
where a >= min_crop_size)
mode_trials: number of trials for sampling min_ious threshold
crop_trials: number of trials for sampling crop_size after cropping
"""
def __init__(
self,
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3,
mode_trials=1000,
crop_trials=50,
):
self.min_ious = min_ious
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
self.mode_trials = mode_trials
self.crop_trials = crop_trials
def get_transform(self, image, boxes):
"""Call function to crop images and bounding boxes with minimum IoU
constraint.
Args:
boxes: ground truth boxes in (x1, y1, x2, y2) format
"""
if boxes is None:
return NoOpTransform()
h, w, c = image.shape
for _ in range(self.mode_trials):
mode = random.choice(self.sample_mode)
self.mode = mode
if mode == 1:
return NoOpTransform()
min_iou = mode
for _ in range(self.crop_trials):
new_w = random.uniform(self.min_crop_size * w, w)
new_h = random.uniform(self.min_crop_size * h, h)
# h / w in [0.5, 2]
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = random.uniform(w - new_w)
top = random.uniform(h - new_h)
patch = np.array((int(left), int(top), int(left + new_w), int(top + new_h)))
# Line or point crop is not allowed
if patch[2] == patch[0] or patch[3] == patch[1]:
continue
overlaps = pairwise_iou(
Boxes(patch.reshape(-1, 4)), Boxes(boxes.reshape(-1, 4))
).reshape(-1)
if len(overlaps) > 0 and overlaps.min() < min_iou:
continue
# center of boxes should inside the crop img
# only adjust boxes and instance masks when the gt is not empty
if len(overlaps) > 0:
# adjust boxes
def is_center_of_bboxes_in_patch(boxes, patch):
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = (
(center[:, 0] > patch[0])
* (center[:, 1] > patch[1])
* (center[:, 0] < patch[2])
* (center[:, 1] < patch[3])
)
return mask
mask = is_center_of_bboxes_in_patch(boxes, patch)
if not mask.any():
continue
return CropTransform(int(left), int(top), int(new_w), int(new_h))
|