File size: 18,543 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# Copyright (c) Facebook, Inc. and its affiliates.
import io
import numpy as np
import os
import re
import tempfile
import unittest
from typing import Callable
import torch
import torch.onnx.symbolic_helper as sym_help
from packaging import version
from torch._C import ListType
from torch.onnx import register_custom_op_symbolic
from detectron2 import model_zoo
from detectron2.config import CfgNode, LazyConfig, instantiate
from detectron2.data import DatasetCatalog
from detectron2.data.detection_utils import read_image
from detectron2.modeling import build_model
from detectron2.structures import Boxes, Instances, ROIMasks
from detectron2.utils.file_io import PathManager
"""
Internal utilities for tests. Don't use except for writing tests.
"""
def get_model_no_weights(config_path):
"""
Like model_zoo.get, but do not load any weights (even pretrained)
"""
cfg = model_zoo.get_config(config_path)
if isinstance(cfg, CfgNode):
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
return build_model(cfg)
else:
return instantiate(cfg.model)
def random_boxes(num_boxes, max_coord=100, device="cpu"):
"""
Create a random Nx4 boxes tensor, with coordinates < max_coord.
"""
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5)
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
# Note: the implementation of this function in torchvision is:
# boxes[:, 2:] += torch.rand(N, 2) * 100
# but it does not guarantee non-negative widths/heights constraints:
# boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]:
boxes[:, 2:] += boxes[:, :2]
return boxes
def get_sample_coco_image(tensor=True):
"""
Args:
tensor (bool): if True, returns 3xHxW tensor.
else, returns a HxWx3 numpy array.
Returns:
an image, in BGR color.
"""
try:
file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"]
if not PathManager.exists(file_name):
raise FileNotFoundError()
except IOError:
# for public CI to run
file_name = PathManager.get_local_path(
"http://images.cocodataset.org/train2017/000000000009.jpg"
)
ret = read_image(file_name, format="BGR")
if tensor:
ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1)))
return ret
def convert_scripted_instances(instances):
"""
Convert a scripted Instances object to a regular :class:`Instances` object
"""
assert hasattr(
instances, "image_size"
), f"Expect an Instances object, but got {type(instances)}!"
ret = Instances(instances.image_size)
for name in instances._field_names:
val = getattr(instances, "_" + name, None)
if val is not None:
ret.set(name, val)
return ret
def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False):
"""
Args:
input, other (Instances):
size_as_tensor: compare image_size of the Instances as tensors (instead of tuples).
Useful for comparing outputs of tracing.
"""
if not isinstance(input, Instances):
input = convert_scripted_instances(input)
if not isinstance(other, Instances):
other = convert_scripted_instances(other)
if not msg:
msg = "Two Instances are different! "
else:
msg = msg.rstrip() + " "
size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!"
if size_as_tensor:
assert torch.equal(
torch.tensor(input.image_size), torch.tensor(other.image_size)
), size_error_msg
else:
assert input.image_size == other.image_size, size_error_msg
fields = sorted(input.get_fields().keys())
fields_other = sorted(other.get_fields().keys())
assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!"
for f in fields:
val1, val2 = input.get(f), other.get(f)
if isinstance(val1, (Boxes, ROIMasks)):
# boxes in the range of O(100) and can have a larger tolerance
assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), (
msg + f"Field {f} differs too much!"
)
elif isinstance(val1, torch.Tensor):
if val1.dtype.is_floating_point:
mag = torch.abs(val1).max().cpu().item()
assert torch.allclose(val1, val2, atol=mag * rtol), (
msg + f"Field {f} differs too much!"
)
else:
assert torch.equal(val1, val2), msg + f"Field {f} is different!"
else:
raise ValueError(f"Don't know how to compare type {type(val1)}")
def reload_script_model(module):
"""
Save a jit module and load it back.
Similar to the `getExportImportCopy` function in torch/testing/
"""
buffer = io.BytesIO()
torch.jit.save(module, buffer)
buffer.seek(0)
return torch.jit.load(buffer)
def reload_lazy_config(cfg):
"""
Save an object by LazyConfig.save and load it back.
This is used to test that a config still works the same after
serialization/deserialization.
"""
with tempfile.TemporaryDirectory(prefix="detectron2") as d:
fname = os.path.join(d, "d2_cfg_test.yaml")
LazyConfig.save(cfg, fname)
return LazyConfig.load(fname)
def min_torch_version(min_version: str) -> bool:
"""
Returns True when torch's version is at least `min_version`.
"""
try:
import torch
except ImportError:
return False
installed_version = version.parse(torch.__version__.split("+")[0])
min_version = version.parse(min_version)
return installed_version >= min_version
def has_dynamic_axes(onnx_model):
"""
Return True when all ONNX input/output have only dynamic axes for all ranks
"""
return all(
not dim.dim_param.isnumeric()
for inp in onnx_model.graph.input
for dim in inp.type.tensor_type.shape.dim
) and all(
not dim.dim_param.isnumeric()
for out in onnx_model.graph.output
for dim in out.type.tensor_type.shape.dim
)
def register_custom_op_onnx_export(
opname: str, symbolic_fn: Callable, opset_version: int, min_version: str
) -> None:
"""
Register `symbolic_fn` as PyTorch's symbolic `opname`-`opset_version` for ONNX export.
The registration is performed only when current PyTorch's version is < `min_version.`
IMPORTANT: symbolic must be manually unregistered after the caller function returns
"""
if min_torch_version(min_version):
return
register_custom_op_symbolic(opname, symbolic_fn, opset_version)
print(f"_register_custom_op_onnx_export({opname}, {opset_version}) succeeded.")
def unregister_custom_op_onnx_export(opname: str, opset_version: int, min_version: str) -> None:
"""
Unregister PyTorch's symbolic `opname`-`opset_version` for ONNX export.
The un-registration is performed only when PyTorch's version is < `min_version`
IMPORTANT: The symbolic must have been manually registered by the caller, otherwise
the incorrect symbolic may be unregistered instead.
"""
# TODO: _unregister_custom_op_symbolic is introduced PyTorch>=1.10
# Remove after PyTorch 1.10+ is used by ALL detectron2's CI
try:
from torch.onnx import unregister_custom_op_symbolic as _unregister_custom_op_symbolic
except ImportError:
def _unregister_custom_op_symbolic(symbolic_name, opset_version):
import torch.onnx.symbolic_registry as sym_registry
from torch.onnx.symbolic_helper import _onnx_main_opset, _onnx_stable_opsets
def _get_ns_op_name_from_custom_op(symbolic_name):
try:
from torch.onnx.utils import get_ns_op_name_from_custom_op
ns, op_name = get_ns_op_name_from_custom_op(symbolic_name)
except ImportError as import_error:
if not bool(
re.match(r"^[a-zA-Z0-9-_]*::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name)
):
raise ValueError(
f"Invalid symbolic name {symbolic_name}. Must be `domain::name`"
) from import_error
ns, op_name = symbolic_name.split("::")
if ns == "onnx":
raise ValueError(f"{ns} domain cannot be modified.") from import_error
if ns == "aten":
ns = ""
return ns, op_name
def _unregister_op(opname: str, domain: str, version: int):
try:
sym_registry.unregister_op(op_name, ns, ver)
except AttributeError as attribute_error:
if sym_registry.is_registered_op(opname, domain, version):
del sym_registry._registry[(domain, version)][opname]
if not sym_registry._registry[(domain, version)]:
del sym_registry._registry[(domain, version)]
else:
raise RuntimeError(
f"The opname {opname} is not registered."
) from attribute_error
ns, op_name = _get_ns_op_name_from_custom_op(symbolic_name)
for ver in _onnx_stable_opsets + [_onnx_main_opset]:
if ver >= opset_version:
_unregister_op(op_name, ns, ver)
if min_torch_version(min_version):
return
_unregister_custom_op_symbolic(opname, opset_version)
print(f"_unregister_custom_op_onnx_export({opname}, {opset_version}) succeeded.")
skipIfOnCPUCI = unittest.skipIf(
os.environ.get("CI") and not torch.cuda.is_available(),
"The test is too slow on CPUs and will be executed on CircleCI's GPU jobs.",
)
def skipIfUnsupportedMinOpsetVersion(min_opset_version, current_opset_version=None):
"""
Skips tests for ONNX Opset versions older than min_opset_version.
"""
def skip_dec(func):
def wrapper(self):
try:
opset_version = self.opset_version
except AttributeError:
opset_version = current_opset_version
if opset_version < min_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version {opset_version}"
f", required is {min_opset_version}"
)
return func(self)
return wrapper
return skip_dec
def skipIfUnsupportedMinTorchVersion(min_version):
"""
Skips tests for PyTorch versions older than min_version.
"""
reason = f"module 'torch' has __version__ {torch.__version__}" f", required is: {min_version}"
return unittest.skipIf(not min_torch_version(min_version), reason)
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_to(g, self, *args):
"""aten::to() symbolic that must be used for testing with PyTorch < 1.11.1."""
def is_aten_to_device_only(args):
if len(args) == 4:
# aten::to(Tensor, Device, bool, bool, memory_format)
return (
args[0].node().kind() == "prim::device"
or args[0].type().isSubtypeOf(ListType.ofInts())
or (
sym_help._is_value(args[0])
and args[0].node().kind() == "onnx::Constant"
and isinstance(args[0].node()["value"], str)
)
)
elif len(args) == 5:
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
# When dtype is None, this is a aten::to(device) call
dtype = sym_help._get_const(args[1], "i", "dtype")
return dtype is None
elif len(args) in (6, 7):
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
# When dtype is None, this is a aten::to(device) call
dtype = sym_help._get_const(args[0], "i", "dtype")
return dtype is None
return False
# ONNX doesn't have a concept of a device, so we ignore device-only casts
if is_aten_to_device_only(args):
return self
if len(args) == 4:
# TestONNXRuntime::test_ones_bool shows args[0] of aten::to can be onnx::Constant[Tensor]
# In this case, the constant value is a tensor not int,
# so sym_help._maybe_get_const(args[0], 'i') would not work.
dtype = args[0]
if sym_help._is_value(args[0]) and args[0].node().kind() == "onnx::Constant":
tval = args[0].node()["value"]
if isinstance(tval, torch.Tensor):
if len(tval.shape) == 0:
tval = tval.item()
dtype = int(tval)
else:
dtype = tval
if sym_help._is_value(dtype) or isinstance(dtype, torch.Tensor):
# aten::to(Tensor, Tensor, bool, bool, memory_format)
dtype = args[0].type().scalarType()
return g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx[dtype])
else:
# aten::to(Tensor, ScalarType, bool, bool, memory_format)
# memory_format is ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 5:
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
dtype = sym_help._get_const(args[1], "i", "dtype")
# memory_format is ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 6:
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
dtype = sym_help._get_const(args[0], "i", "dtype")
# Layout, device and memory_format are ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 7:
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
dtype = sym_help._get_const(args[0], "i", "dtype")
# Layout, device and memory_format are ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
else:
return sym_help._onnx_unsupported("Unknown aten::to signature")
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_repeat_interleave(g, self, repeats, dim=None, output_size=None):
# from torch.onnx.symbolic_helper import ScalarType
from torch.onnx.symbolic_opset9 import expand, unsqueeze
input = self
# if dim is None flatten
# By default, use the flattened input array, and return a flat output array
if sym_help._is_none(dim):
input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1])))
dim = 0
else:
dim = sym_help._maybe_get_scalar(dim)
repeats_dim = sym_help._get_tensor_rank(repeats)
repeats_sizes = sym_help._get_tensor_sizes(repeats)
input_sizes = sym_help._get_tensor_sizes(input)
if repeats_dim is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank."
)
if repeats_sizes is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats size."
)
if input_sizes is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "input size."
)
input_sizes_temp = input_sizes.copy()
for idx, input_size in enumerate(input_sizes):
if input_size is None:
input_sizes[idx], input_sizes_temp[idx] = 0, -1
# Cases where repeats is an int or single value tensor
if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
if not sym_help._is_tensor(repeats):
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
if input_sizes[dim] == 0:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave",
9,
13,
"Unsupported along dimension with unknown input size",
)
else:
reps = input_sizes[dim]
repeats = expand(g, repeats, g.op("Constant", value_t=torch.tensor([reps])), None)
# Cases where repeats is a 1 dim Tensor
elif repeats_dim == 1:
if input_sizes[dim] == 0:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave",
9,
13,
"Unsupported along dimension with unknown input size",
)
if repeats_sizes[0] is None:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave", 9, 13, "Unsupported for cases with dynamic repeats"
)
assert (
repeats_sizes[0] == input_sizes[dim]
), "repeats must have the same size as input along dim"
reps = repeats_sizes[0]
else:
raise RuntimeError("repeats must be 0-dim or 1-dim tensor")
final_splits = list()
r_splits = sym_help._repeat_interleave_split_helper(g, repeats, reps, 0)
if isinstance(r_splits, torch._C.Value):
r_splits = [r_splits]
i_splits = sym_help._repeat_interleave_split_helper(g, input, reps, dim)
if isinstance(i_splits, torch._C.Value):
i_splits = [i_splits]
input_sizes[dim], input_sizes_temp[dim] = -1, 1
for idx, r_split in enumerate(r_splits):
i_split = unsqueeze(g, i_splits[idx], dim + 1)
r_concat = [
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[: dim + 1])),
r_split,
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[dim + 1 :])),
]
r_concat = g.op("Concat", *r_concat, axis_i=0)
i_split = expand(g, i_split, r_concat, None)
i_split = sym_help._reshape_helper(
g,
i_split,
g.op("Constant", value_t=torch.LongTensor(input_sizes)),
allowzero=0,
)
final_splits.append(i_split)
return g.op("Concat", *final_splits, axis_i=dim)
|