File size: 25,598 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import (
    ImagePositionalEmbeddings,
    PatchEmbed,
    PixArtAlphaTextProjection,
)
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import BaseOutput, deprecate, is_torch_version, USE_PEFT_BACKEND
from leffa.diffusion_model.attention_ref import BasicTransformerBlock
from torch import nn


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    A 2D Transformer model for image-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        num_vector_embeds (`int`, *optional*):
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        patch_size: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        attention_type: str = "default",
        caption_channels: int = None,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = (
            in_channels is not None) and (patch_size is None)
        self.is_input_vectorized = num_vector_embeds is not None
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate(
                "norm_type!=num_embeds_ada_norm",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            norm_type = "ada_norm"

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif (
            not self.is_input_continuous
            and not self.is_input_vectorized
            and not self.is_input_patches
        ):
            raise ValueError(
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(
                num_groups=norm_num_groups,
                num_channels=in_channels,
                eps=1e-6,
                affine=True,
            )
            if use_linear_projection:
                self.proj_in = linear_cls(in_channels, inner_dim)
            else:
                self.proj_in = conv_cls(
                    in_channels, inner_dim, kernel_size=1, stride=1, padding=0
                )
        elif self.is_input_vectorized:
            assert (
                sample_size is not None
            ), "Transformer2DModel over discrete input must provide sample_size"
            assert (
                num_vector_embeds is not None
            ), "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds,
                embed_dim=inner_dim,
                height=self.height,
                width=self.width,
            )
        elif self.is_input_patches:
            assert (
                sample_size is not None
            ), "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
            # => 64 (= 512 pixart) has interpolation scale 1
            interpolation_scale = self.config.sample_size // 64
            interpolation_scale = max(interpolation_scale, 1)
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
                interpolation_scale=interpolation_scale,
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=double_self_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    attention_type=attention_type,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        if self.is_input_continuous:
            # TODO: should use out_channels for continuous projections
            if use_linear_projection:
                self.proj_out = linear_cls(inner_dim, in_channels)
            else:
                self.proj_out = conv_cls(
                    inner_dim, in_channels, kernel_size=1, stride=1, padding=0
                )
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
        elif self.is_input_patches and norm_type != "ada_norm_single":
            self.norm_out = nn.LayerNorm(
                inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(
                inner_dim, patch_size * patch_size * self.out_channels
            )
        elif self.is_input_patches and norm_type == "ada_norm_single":
            self.norm_out = nn.LayerNorm(
                inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = nn.Parameter(
                torch.randn(2, inner_dim) / inner_dim**0.5
            )
            self.proj_out = nn.Linear(
                inner_dim, patch_size * patch_size * self.out_channels
            )

        # 5. PixArt-Alpha blocks.
        self.adaln_single = None
        self.use_additional_conditions = False
        if norm_type == "ada_norm_single":
            self.use_additional_conditions = self.config.sample_size == 128
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(
                inner_dim, use_additional_conditions=self.use_additional_conditions
            )

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=caption_channels, hidden_size=inner_dim
            )

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (
                1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (
                1 - encoder_attention_mask.to(hidden_states.dtype)
            ) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # Retrieve lora scale.
        lora_scale = (
            cross_attention_kwargs.get("scale", 1.0)
            if cross_attention_kwargs is not None
            else 1.0
        )

        # 1. Input
        if self.is_input_continuous:
            batch, _, height, width = hidden_states.shape
            residual = hidden_states

            hidden_states = self.norm(hidden_states)
            if not self.use_linear_projection:
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                    batch, height * width, inner_dim
                )
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                    batch, height * width, inner_dim
                )
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )

        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
        elif self.is_input_patches:
            height, width = (
                hidden_states.shape[-2] // self.patch_size,
                hidden_states.shape[-1] // self.patch_size,
            )
            hidden_states = self.pos_embed(hidden_states)

            if self.adaln_single is not None:
                if self.use_additional_conditions and added_cond_kwargs is None:
                    raise ValueError(
                        "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                    )
                batch_size = hidden_states.shape[0]
                timestep, embedded_timestep = self.adaln_single(
                    timestep,
                    added_cond_kwargs,
                    batch_size=batch_size,
                    hidden_dtype=hidden_states.dtype,
                )

        # 2. Blocks
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(
                encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(
                batch_size, -1, hidden_states.shape[-1]
            )

        reference_features = []
        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(
                        ">=", "1.11.0") else {}
                )
                hidden_states, out_reference_features = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, out_reference_features = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )
            reference_features += out_reference_features
        # 3. Output
        if self.is_input_continuous:
            if not self.use_linear_projection:
                hidden_states = (
                    hidden_states.reshape(batch, height, width, inner_dim)
                    .permute(0, 3, 1, 2)
                    .contiguous()
                )
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
            else:
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
                hidden_states = (
                    hidden_states.reshape(batch, height, width, inner_dim)
                    .permute(0, 3, 1, 2)
                    .contiguous()
                )

            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if self.is_input_patches:
            if self.config.norm_type != "ada_norm_single":
                conditioning = self.transformer_blocks[0].norm1.emb(
                    timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
                shift, scale = self.proj_out_1(
                    F.silu(conditioning)).chunk(2, dim=1)
                hidden_states = (
                    self.norm_out(hidden_states) *
                    (1 + scale[:, None]) + shift[:, None]
                )
                hidden_states = self.proj_out_2(hidden_states)
            elif self.config.norm_type == "ada_norm_single":
                shift, scale = (
                    self.scale_shift_table[None] + embedded_timestep[:, None]
                ).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states)
                # Modulation
                hidden_states = hidden_states * (1 + scale) + shift
                hidden_states = self.proj_out(hidden_states)
                hidden_states = hidden_states.squeeze(1)

            # unpatchify
            if self.adaln_single is None:
                height = width = int(hidden_states.shape[1] ** 0.5)
            hidden_states = hidden_states.reshape(
                shape=(
                    -1,
                    height,
                    width,
                    self.patch_size,
                    self.patch_size,
                    self.out_channels,
                )
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(
                    -1,
                    self.out_channels,
                    height * self.patch_size,
                    width * self.patch_size,
                )
            )

        if not return_dict:
            return (output,), reference_features

        return Transformer2DModelOutput(sample=output), reference_features