File size: 9,407 Bytes
b213d84 3b5e117 b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import inspect
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from PIL import Image, ImageFilter
class LeffaPipeline(object):
def __init__(
self,
model,
repaint=False,
device="cuda",
):
self.vae = model.vae
self.unet_encoder = model.unet_encoder
self.unet = model.unet
self.noise_scheduler = model.noise_scheduler
self.repaint = repaint # used for virtual try-on
self.device = device
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
@torch.no_grad()
def __call__(
self,
src_image,
ref_image,
mask,
densepose,
num_inference_steps: int = 50,
do_classifier_free_guidance=True,
guidance_scale: float = 2.5,
generator=None,
eta=1.0,
**kwargs,
):
src_image = src_image.to(device=self.vae.device, dtype=self.vae.dtype)
ref_image = ref_image.to(device=self.vae.device, dtype=self.vae.dtype)
mask = mask.to(device=self.vae.device, dtype=self.vae.dtype)
densepose = densepose.to(device=self.vae.device, dtype=self.vae.dtype)
masked_image = src_image * (mask < 0.5)
# 1. VAE encoding
with torch.no_grad():
# src_image_latent = self.vae.encode(src_image).latent_dist.sample()
masked_image_latent = self.vae.encode(
masked_image).latent_dist.sample()
ref_image_latent = self.vae.encode(ref_image).latent_dist.sample()
# src_image_latent = src_image_latent * self.vae.config.scaling_factor
masked_image_latent = masked_image_latent * self.vae.config.scaling_factor
ref_image_latent = ref_image_latent * self.vae.config.scaling_factor
mask_latent = F.interpolate(
mask, size=masked_image_latent.shape[-2:], mode="nearest")
densepose_latent = F.interpolate(
densepose, size=masked_image_latent.shape[-2:], mode="nearest")
# 2. prepare noise
noise = torch.randn_like(masked_image_latent)
self.noise_scheduler.set_timesteps(
num_inference_steps, device=self.device)
timesteps = self.noise_scheduler.timesteps
noise = noise * self.noise_scheduler.init_noise_sigma
latent = noise
# 3. classifier-free guidance
if do_classifier_free_guidance:
# src_image_latent = torch.cat([src_image_latent] * 2)
masked_image_latent = torch.cat([masked_image_latent] * 2)
ref_image_latent = torch.cat(
[torch.zeros_like(ref_image_latent), ref_image_latent])
mask_latent = torch.cat([mask_latent] * 2)
densepose_latent = torch.cat([densepose_latent] * 2)
# 6. Denoising loop
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = (
len(timesteps) - num_inference_steps * self.noise_scheduler.order
)
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latent if we are doing classifier free guidance
_latent_model_input = (
torch.cat(
[latent] * 2) if do_classifier_free_guidance else latent
)
_latent_model_input = self.noise_scheduler.scale_model_input(
_latent_model_input, t
)
# prepare the input for the inpainting model
latent_model_input = torch.cat(
[
_latent_model_input,
mask_latent,
masked_image_latent,
densepose_latent,
],
dim=1,
)
down, reference_features = self.unet_encoder(
ref_image_latent, t, encoder_hidden_states=None, return_dict=False
)
reference_features = list(reference_features)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=None,
cross_attention_kwargs=None,
added_cond_kwargs=None,
reference_features=reference_features,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_cond - noise_pred_uncond
)
if do_classifier_free_guidance and guidance_scale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_cond,
guidance_rescale=guidance_scale,
)
# compute the previous noisy sample x_t -> x_t-1
latent = self.noise_scheduler.step(
noise_pred, t, latent, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps
and (i + 1) % self.noise_scheduler.order == 0
):
progress_bar.update()
# Decode the final latent
gen_image = latent_to_image(latent, self.vae)
if self.repaint:
src_image = (src_image / 2 + 0.5).clamp(0, 1)
src_image = src_image.cpu().permute(0, 2, 3, 1).float().numpy()
src_image = numpy_to_pil(src_image)
mask = mask.cpu().permute(0, 2, 3, 1).float().numpy()
mask = numpy_to_pil(mask)
mask = [i.convert("RGB") for i in mask]
gen_image = [
repaint(_src_image, _mask, _gen_image)
for _src_image, _mask, _gen_image in zip(src_image, mask, gen_image)
]
return (gen_image,)
def latent_to_image(latent, vae):
latent = 1 / vae.config.scaling_factor * latent
image = vae.decode(latent).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
return image
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L")
for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 100
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled +
(1 - guidance_rescale) * noise_cfg
)
return noise_cfg
|