File size: 14,180 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright (c) Facebook, Inc. and its affiliates.

from typing import Any, List
import torch
from torch.nn import functional as F

from detectron2.config import CfgNode
from detectron2.structures import Instances

from .mask_or_segm import MaskOrSegmentationLoss
from .registry import DENSEPOSE_LOSS_REGISTRY
from .utils import (
    BilinearInterpolationHelper,
    ChartBasedAnnotationsAccumulator,
    LossDict,
    extract_packed_annotations_from_matches,
)


@DENSEPOSE_LOSS_REGISTRY.register()
class DensePoseChartLoss:
    """
    DensePose loss for chart-based training. A mesh is split into charts,
    each chart is given a label (I) and parametrized by 2 coordinates referred to
    as U and V. Ground truth consists of a number of points annotated with
    I, U and V values and coarse segmentation S defined for all pixels of the
    object bounding box. In some cases (see `COARSE_SEGM_TRAINED_BY_MASKS`),
    semantic segmentation annotations can be used as ground truth inputs as well.

    Estimated values are tensors:
     * U coordinates, tensor of shape [N, C, S, S]
     * V coordinates, tensor of shape [N, C, S, S]
     * fine segmentation estimates, tensor of shape [N, C, S, S] with raw unnormalized
       scores for each fine segmentation label at each location
     * coarse segmentation estimates, tensor of shape [N, D, S, S] with raw unnormalized
       scores for each coarse segmentation label at each location
    where N is the number of detections, C is the number of fine segmentation
    labels, S is the estimate size ( = width = height) and D is the number of
    coarse segmentation channels.

    The losses are:
    * regression (smooth L1) loss for U and V coordinates
    * cross entropy loss for fine (I) and coarse (S) segmentations
    Each loss has an associated weight
    """

    def __init__(self, cfg: CfgNode):
        """
        Initialize chart-based loss from configuration options

        Args:
            cfg (CfgNode): configuration options
        """
        # fmt: off
        self.heatmap_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE
        self.w_points     = cfg.MODEL.ROI_DENSEPOSE_HEAD.POINT_REGRESSION_WEIGHTS
        self.w_part       = cfg.MODEL.ROI_DENSEPOSE_HEAD.PART_WEIGHTS
        self.w_segm       = cfg.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS
        self.n_segm_chan  = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS
        # fmt: on
        self.segm_trained_by_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS
        self.segm_loss = MaskOrSegmentationLoss(cfg)

    def __call__(
        self, proposals_with_gt: List[Instances], densepose_predictor_outputs: Any, **kwargs
    ) -> LossDict:
        """
        Produce chart-based DensePose losses

        Args:
            proposals_with_gt (list of Instances): detections with associated ground truth data
            densepose_predictor_outputs: an object of a dataclass that contains predictor outputs
                with estimated values; assumed to have the following attributes:
                * coarse_segm - coarse segmentation estimates, tensor of shape [N, D, S, S]
                * fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S]
                * u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S]
                * v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S]
            where N is the number of detections, C is the number of fine segmentation
            labels, S is the estimate size ( = width = height) and D is the number of
            coarse segmentation channels.

        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_U`: smooth L1 loss for U coordinate estimates
             * `loss_densepose_V`: smooth L1 loss for V coordinate estimates
             * `loss_densepose_I`: cross entropy for raw unnormalized scores for fine
                 segmentation estimates given ground truth labels;
             * `loss_densepose_S`: cross entropy for raw unnormalized scores for coarse
                 segmentation estimates given ground truth labels;
        """
        # densepose outputs are computed for all images and all bounding boxes;
        # i.e. if a batch has 4 images with (3, 1, 2, 1) proposals respectively,
        # the outputs will have size(0) == 3+1+2+1 == 7

        if not len(proposals_with_gt):
            return self.produce_fake_densepose_losses(densepose_predictor_outputs)

        accumulator = ChartBasedAnnotationsAccumulator()
        packed_annotations = extract_packed_annotations_from_matches(proposals_with_gt, accumulator)

        # NOTE: we need to keep the same computation graph on all the GPUs to
        # perform reduction properly. Hence even if we have no data on one
        # of the GPUs, we still need to generate the computation graph.
        # Add fake (zero) loss in the form Tensor.sum() * 0
        if packed_annotations is None:
            return self.produce_fake_densepose_losses(densepose_predictor_outputs)

        h, w = densepose_predictor_outputs.u.shape[2:]
        interpolator = BilinearInterpolationHelper.from_matches(
            packed_annotations,
            (h, w),
        )

        j_valid_fg = interpolator.j_valid * (  # pyre-ignore[16]
            packed_annotations.fine_segm_labels_gt > 0
        )
        # pyre-fixme[6]: For 1st param expected `Tensor` but got `int`.
        if not torch.any(j_valid_fg):
            return self.produce_fake_densepose_losses(densepose_predictor_outputs)

        losses_uv = self.produce_densepose_losses_uv(
            proposals_with_gt,
            densepose_predictor_outputs,
            packed_annotations,
            interpolator,
            j_valid_fg,  # pyre-ignore[6]
        )

        losses_segm = self.produce_densepose_losses_segm(
            proposals_with_gt,
            densepose_predictor_outputs,
            packed_annotations,
            interpolator,
            j_valid_fg,  # pyre-ignore[6]
        )

        return {**losses_uv, **losses_segm}

    def produce_fake_densepose_losses(self, densepose_predictor_outputs: Any) -> LossDict:
        """
        Fake losses for fine segmentation and U/V coordinates. These are used when
        no suitable ground truth data was found in a batch. The loss has a value 0
        and is primarily used to construct the computation graph, so that
        `DistributedDataParallel` has similar graphs on all GPUs and can perform
        reduction properly.

        Args:
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have the following attributes:
             * fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S]
             * u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S]
             * v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S]
        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_U`: has value 0
             * `loss_densepose_V`: has value 0
             * `loss_densepose_I`: has value 0
             * `loss_densepose_S`: has value 0
        """
        losses_uv = self.produce_fake_densepose_losses_uv(densepose_predictor_outputs)
        losses_segm = self.produce_fake_densepose_losses_segm(densepose_predictor_outputs)
        return {**losses_uv, **losses_segm}

    def produce_fake_densepose_losses_uv(self, densepose_predictor_outputs: Any) -> LossDict:
        """
        Fake losses for U/V coordinates. These are used when no suitable ground
        truth data was found in a batch. The loss has a value 0
        and is primarily used to construct the computation graph, so that
        `DistributedDataParallel` has similar graphs on all GPUs and can perform
        reduction properly.

        Args:
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have the following attributes:
             * u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S]
             * v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S]
        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_U`: has value 0
             * `loss_densepose_V`: has value 0
        """
        return {
            "loss_densepose_U": densepose_predictor_outputs.u.sum() * 0,
            "loss_densepose_V": densepose_predictor_outputs.v.sum() * 0,
        }

    def produce_fake_densepose_losses_segm(self, densepose_predictor_outputs: Any) -> LossDict:
        """
        Fake losses for fine / coarse segmentation. These are used when
        no suitable ground truth data was found in a batch. The loss has a value 0
        and is primarily used to construct the computation graph, so that
        `DistributedDataParallel` has similar graphs on all GPUs and can perform
        reduction properly.

        Args:
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have the following attributes:
             * fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S]
             * coarse_segm - coarse segmentation estimates, tensor of shape [N, D, S, S]
        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_I`: has value 0
             * `loss_densepose_S`: has value 0, added only if `segm_trained_by_masks` is False
        """
        losses = {
            "loss_densepose_I": densepose_predictor_outputs.fine_segm.sum() * 0,
            "loss_densepose_S": self.segm_loss.fake_value(densepose_predictor_outputs),
        }
        return losses

    def produce_densepose_losses_uv(
        self,
        proposals_with_gt: List[Instances],
        densepose_predictor_outputs: Any,
        packed_annotations: Any,
        interpolator: BilinearInterpolationHelper,
        j_valid_fg: torch.Tensor,
    ) -> LossDict:
        """
        Compute losses for U/V coordinates: smooth L1 loss between
        estimated coordinates and the ground truth.

        Args:
            proposals_with_gt (list of Instances): detections with associated ground truth data
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have the following attributes:
             * u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S]
             * v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S]
        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_U`: smooth L1 loss for U coordinate estimates
             * `loss_densepose_V`: smooth L1 loss for V coordinate estimates
        """
        u_gt = packed_annotations.u_gt[j_valid_fg]
        u_est = interpolator.extract_at_points(densepose_predictor_outputs.u)[j_valid_fg]
        v_gt = packed_annotations.v_gt[j_valid_fg]
        v_est = interpolator.extract_at_points(densepose_predictor_outputs.v)[j_valid_fg]
        return {
            "loss_densepose_U": F.smooth_l1_loss(u_est, u_gt, reduction="sum") * self.w_points,
            "loss_densepose_V": F.smooth_l1_loss(v_est, v_gt, reduction="sum") * self.w_points,
        }

    def produce_densepose_losses_segm(
        self,
        proposals_with_gt: List[Instances],
        densepose_predictor_outputs: Any,
        packed_annotations: Any,
        interpolator: BilinearInterpolationHelper,
        j_valid_fg: torch.Tensor,
    ) -> LossDict:
        """
        Losses for fine / coarse segmentation: cross-entropy
        for segmentation unnormalized scores given ground truth labels at
        annotated points for fine segmentation and dense mask annotations
        for coarse segmentation.

        Args:
            proposals_with_gt (list of Instances): detections with associated ground truth data
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have the following attributes:
             * fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S]
             * coarse_segm - coarse segmentation estimates, tensor of shape [N, D, S, S]
        Return:
            dict: str -> tensor: dict of losses with the following entries:
             * `loss_densepose_I`: cross entropy for raw unnormalized scores for fine
                 segmentation estimates given ground truth labels
             * `loss_densepose_S`: cross entropy for raw unnormalized scores for coarse
                 segmentation estimates given ground truth labels;
                 may be included if coarse segmentation is only trained
                 using DensePose ground truth; if additional supervision through
                 instance segmentation data is performed (`segm_trained_by_masks` is True),
                 this loss is handled by `produce_mask_losses` instead
        """
        fine_segm_gt = packed_annotations.fine_segm_labels_gt[
            interpolator.j_valid  # pyre-ignore[16]
        ]
        fine_segm_est = interpolator.extract_at_points(
            densepose_predictor_outputs.fine_segm,
            slice_fine_segm=slice(None),
            w_ylo_xlo=interpolator.w_ylo_xlo[:, None],  # pyre-ignore[16]
            w_ylo_xhi=interpolator.w_ylo_xhi[:, None],  # pyre-ignore[16]
            w_yhi_xlo=interpolator.w_yhi_xlo[:, None],  # pyre-ignore[16]
            w_yhi_xhi=interpolator.w_yhi_xhi[:, None],  # pyre-ignore[16]
        )[interpolator.j_valid, :]
        return {
            "loss_densepose_I": F.cross_entropy(fine_segm_est, fine_segm_gt.long()) * self.w_part,
            "loss_densepose_S": self.segm_loss(
                proposals_with_gt, densepose_predictor_outputs, packed_annotations
            )
            * self.w_segm,
        }